Lesson 1. Introduction

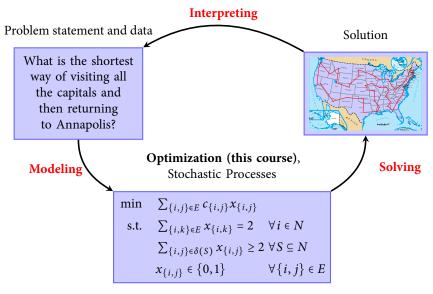
What is operations research?

- "The most influential academic discipline field you've never heard of" [Boston Globe, 2004]
- Operations Research (OR) is the discipline of applying advanced mathematical methods to help make better decisions
- "The Science of Better"

[INFORMS slogan]

- "A liberal education in a technological world" [Thomas Magnanti, former Dean of Engineering at MIT]
- Numerous applications
 - manufacturing
 - operating systems
 - logistics
 - airline pricing
 - communications
 - finance
 - marketing

Historical connections between OR and the military


- 1930s: Britain deployment of radar, aircraft maintenance and inspection, antisubmarine operations
- 1940s: US Navy Antisubmarine Warfare Operations Research Group, Operations Evaluation Group established
- 1950s: Naval Postgraduate School OR program, Naval Research Logistics Quarterly established
- 1962: Center for Naval Analyses established

The traveling salesperson problem

- A saleswoman located in Annapolis wants to visit all 48 state capitals of the continental US sell her wares
- What is shortest way of visiting all the capitals and then returning to Annapolis?
- Entire books have been written on the TSP
- 1962: contest by Proctor and Gamble best TSP tour through 33 US cities
- 1998: The Florida Sun-Sentinel's Science page ponders Santa Claus's traveling problem

- One of the most popular problems in operations research
- Numerous applications in expected and unexpected places
 - Circuit board manufacturing
 - Genome sequencing
- Your turn! Try to find the shortest way of visiting all the capitals and then returning to Annapolis
- What about 13,509 cities in the US?
- Sophisticated mathematical techniques are our best bet

The OR approach

Mathematical model

Goals for this course

- Modeling
 - Recognize opportunities for mathematical optimization
 - Formulate optimization models linear programs that capture the essence of the problem
 - Illustrate applications of real-world problems
- Solving
 - Algorithms to solve these mathematical models
- Detailed topic list and schedule is on the syllabus

Optimization is everywhere

- "Minimize" time it takes to get from class to class
- "Maximize" the company's profits
- (Moneyball) "Best" lineup for the Oakland A's
- We are always trying to make **decisions** in a way that meets some **objective** subject to some **constraints**
- Some success stories of optimization helping solve complex real-world decision-making problems ...

Package delivery

•	Decision:
•	Objective:
•	Constraints:
•	UPS credits optimization-based planning tools with identifying operational changes that have saved over \$87 million to date, reduced planning times, peak and non-peak costs, fleet requirements
port	over \$87 million to date, reduced planning times, peak and non-peak costs, fleet requirements
port	over \$87 million to date, reduced planning times, peak and non-peak costs, fleet requirements as scheduling ACC Basketball earns over \$30 million in revenue annually, almost all from TV and radio
port •	over \$87 million to date, reduced planning times, peak and non-peak costs, fleet requirements as scheduling ACC Basketball earns over \$30 million in revenue annually, almost all from TV and radio TV networks need a steady stream of "high quality" games, NCAA rules, school preferences and tra
port •	over \$87 million to date, reduced planning times, peak and non-peak costs, fleet requirements as scheduling ACC Basketball earns over \$30 million in revenue annually, almost all from TV and radio TV networks need a steady stream of "high quality" games, NCAA rules, school preferences and traditions
port •	ACC Basketball earns over \$30 million in revenue annually, almost all from TV and radio TV networks need a steady stream of "high quality" games, NCAA rules, school preferences and tra ditions

Γ	Constraints:
(Optimization approaches yields reasonable schedules very quickly
at	ion therapy
]	High doses of radiation can kill cancer cells and/or prevent them from growing and dividing
(Can also kill healthy cells!
]	Radiation can be delivered at different angles and intensities
]	Decision:
(Objective:
(Constraints:
L	Many successes reported using different types of optimization models

Next time...

• A small example