SA305 – Linear Programming Asst. Prof. Nelson Uhan

Lesson 5. Work Scheduling Models

Problem 2.3 from Rader A film packaging plant can manufacture four different thicknesses (1, 3, 5, and 0.5 mm) in any combination. Each thickness requires time on each of the three machines in minutes per square yard of film, as shown in the table below. Each machine is available 60 hours per week. The table also gives revenue and cost per square yard for each thickness. Variable labor costs are \$25 per hour for machines 1 and 2, and \$35 per hour for machine 3. Formulate and solve a profit-maximizing LP model for this problem, given the maximum demands for each thickness.

	Time (min)					
Thickness	1	2	3	Max Demand	Revenue	Cost
1 mm	5	8	9	400	110	30
3 mm	4	7	5	250	90	10
5 mm	4	5	4	200	60	10
0.5mm	6	10	6	450	100	20

Problem. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday (1)	7
Tuesday (2)	8
Wednesday (3)	7
Thursday (4)	6
Friday (5)	6
Saturday (6)	4
Sunday (7)	5

Write a linear program that determines the minimum total number of employees needed.

Hint. Define the following decision variables:

 x_1 = number of employees who start work on Monday and work though Friday

 x_2 = number of employees who start work on Tuesday and work though Saturday

 x_7 = number of employees who start work on Sunday and work through Thursday