SA305 – Linear Programming Asst. Prof. Nelson Uhan

Lesson 10. Sets, Summations, For Statements

1 Sets

• A set is a collections of elements/objects, e.g.

 $S = \{1, 2, 3, 4, 5\}$ Candle Types = {Santa, Tree, House} (1)

• "in" symbol:

 $i \in N \iff$ "element *i* is in the set *N*"

• For example:

2 Summations

• Summation symbol over sets:

$$\sum_{i \in N} \quad \Leftrightarrow \quad \text{``sum over all elements of } N$$

- For example:
- Common shorthand: if $N = \{1, 2, \dots, n\}$, then

$$\sum_{i \in N} \text{ is the same as } \sum_{i \in \{1, 2, \dots, n\}} \text{ as well as } \sum_{i=1}^{n}$$

Problem 1. Let *S*, CandleTypes be defined as above in (1). Write each of the following as compactly as possible using summation notation:

- a. $x_{\text{Santa}} + x_{\text{Tree}} + x_{\text{House}}$
- b. $1y_1 + 2y_2 + 3y_3 + 4y_4 + 5y_5$

Spring 2013

3 For statements

• "for" statements over sets:

for $i \in N \iff$ "repeat for each element of N"

• For example:

 $c_j x_1 + d_j x_2 \le b_j$ for $j \in \text{CandleTypes} \iff$

• Common shorthand: if $N = \{1, 2, \dots, n\}$, then

"for
$$i \in N$$
" is the same as "for $i \in \{1, 2, ..., n\}$ " as well as "for $i = 1, 2, ..., n$ "

• Sometimes we say "for all $i \in N$ " instead of "for $i \in N$ "

4 Multiple indices

- Sometimes it may be useful to use decision variables with multiple indices
- Example:
 - Set of hat types: $H = \{A, B, C\}$
 - Set of factories: $F = \{1, 2\}$
 - Each hat type can be be produced at each factory
 - Define decision variables:

$$x_{i,j}$$
 = number of type *i* hats produced at factory *j* for $i \in H$ and $j \in F$ (2)

• What decision variables have we just defined? How many are there?

Problem 2. Using the decision variables defined in (2), write expressions for

- a. Total number of type *C* hats produced
- b. Total number of hats produced at facility 2

Use summation notation if possible.

• Suppose

 $c_{i,j} = \text{cost of producing one type } i \text{ hat at factory } j \text{ for } i \in H \text{ and } j \in F$

• If we produce $x_{i,j}$ hats of type *i* at factory *j* (for $i \in H$ and $j \in F$), the total cost is

Problem 3. Let $M = \{1, 2, 3\}$ and $N = \{1, 2, 3, 4\}$. Write following as compactly as possible using summation notation and "for" statements.

Let y_1 = amount of product 1 produced y_2 = amount of product 2 produced y_3 = amount of product 3 produced y_4 = amount of product 4 produced

$$a_{1,1}y_1 + a_{1,2}y_2 + a_{1,3}y_3 + a_{1,4}y_4 = b_1$$

$$a_{2,1}y_1 + a_{2,2}y_2 + a_{2,3}y_3 + a_{2,4}y_4 = b_2$$

$$a_{3,1}y_1 + a_{3,2}y_2 + a_{3,3}y_3 + a_{3,4}y_4 = b_3$$