Lesson 12. Blending Models, Revisited

Problem 1. You are a portfolio manager in charge of a bank portfolio with at most \$10 million to invest. You want to maximize the earnings of your portfolio. There are 5 different securities available:

Bond	Bond	Quality	Years to	Yield at
name	type	Rating	maturity	maturity
1	Municipal	2	9	4.3%
2	Agency	2	15	2.7
3	Gov't	1	4	2.5
4	Gov't	1	3	2.2
5	Municipal	5	2	4.5

The bank has some policies that limit how you can construct your portfolio:

- 1. The average quality of the portfolio cannot exceed 1.4 (lower quality rating = better)
- 2. The average years to maturity of the portfolio must be between 4 and 6 years
- 3. Bonds cannot be "shorted" (cannot buy negative amounts of bonds)

Describe the input parameters of this problem using sets and for statements.

Let
$$B = set$$
 of bonds

 $t_i = type$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for bond i for ieB
 $g_i = quality rating$ for $q_i = q_i$ for $q_i = q$

Write a linear program for this problem using the symbolic input parameters you described above.

Decision variables: let
$$X_i = amt$$
 invested in bond i (in millions) for ieB

 $max = \sum_{i \in B} p_i X_i$ (total earnings)

 $avg. quality = (fraction in) (bond 1) + (fraction in) (bond 2) (quality) + ...

 $st. = \sum_{i \in B} x_i \le C$ (available funds)

 $st. = \sum_{i \in B} x_i \le C$ (available funds)

 $st. = \sum_{i \in B} x_i \le C$ (available funds)

 $st. = \sum_{i \in B} x_i = \sum_{i \in B} x_i$
 $st. = \sum_{i \in B} x_i = \sum_{i \in B} x_i$
 $st. = \sum_{i \in B} x_i = \sum_{i \in B} x_i$
 $st. = \sum_{i \in B} x_i = \sum_{i \in B} x_i$
 $st. = \sum_{i \in B} x_i = \sum_{i \in B} x_i$
 $st. = \sum_{i \in B} x_i = \sum_{i \in B} x_i = \sum_{i \in B} x_i$
 $st. = \sum_{i \in B} x_i = \sum_{i$$

Write a model and data file in MathProg for your linear program. Solve the linear program. What is the optimal value? What is the optimal solution?

optimal soln:
$$X_1 = 4$$
, $X_2 = 0$, $X_3 = 6$, $X_4 = 0$, $X_5 = 0$
optimal value: 0.322

Bonus. Can you make the linear program we wrote even more general? What sets and input parameters would you have to change, add, or delete?

Let
$$P = Set$$
 of properties

 $A_{ij} = property \ j$ for bond i
 $A_{ij} = lower bound on average property j$
 $A_{ij} = upper bound on average property j$

Replace
$$\otimes$$
 with: $l_j \sum_{i \in B} x_i \leq \sum_{i \in B} a_{ij} x_i \leq u_j \sum_{i \in B} x_i$ for $j \in P$