Lesson 17. Improving Search: Finding Better Solutions

Solutions as vectors

- A **feasible solution** to an optimization model is a choice of values for all decision variables that satisfies all constraints
- Suppose an optimization model has *n* decision variables, x_1, \ldots, x_n
- Easier to refer to solutions as vectors: for example, $\mathbf{x} = (x_1, \dots, x_n)$

A general optimization model with continuous variables

- Let $\mathbf{x} = (x_1, \dots, x_n)$ be decision variables
- Let $f(\mathbf{x})$ and $g_i(\mathbf{x})$ for $i \in \{1, ..., m\}$ be multivariable functions in \mathbf{x} , not necessarily linear
- Let b_i for $i \in \{1, ..., m\}$ be constant scalars

maximize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \begin{cases} \leq \\ \geq \\ = \end{cases} b_i \text{ for } i \in \{1, \dots, m\}$

Example 1. x_2 4 maximize $4x_1 + 2x_2$ subject to $x_1 + 3x_2 \le 12$ (1) ... 3 x1 + 3x2 5 121 $2x_1 + x_2 \le 8$ (2) $x_1 \ge 0$ (3) $x_2 \ge 0$ (4)2 x_1 1 2 3 4

Local and global optimal solutions

• The ε -neighborhood of a solution $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ – denoted $N_{\varepsilon}(x)$ – is the set of all solutions $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ whose distance from \mathbf{x} is less than ε .

$$N_{\varepsilon}(\mathbf{x}) = \left\{ \mathbf{y} \in \mathbb{R}^n : \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \le \varepsilon \right\}$$

- A feasible solution **x** to an optimization model (with only continuous variables) is **locally optimal** if the value of **x** is better than or equal to the value of every other feasible solutions **y** in some ε -neighborhood of **x**
- A feasible solution **x** to an optimization model is **globally optimal** if its value is better than or equal to the value of every other feasible solution
 - Otherwise known simply as an **optimal solution**
- Global optimal solutions are locally optimal, but not vice versa
- Hard to check for global optimality, easy to check for local optimality

Improving search

- General improving search algorithm
 - 1 Find an initial feasible solution \mathbf{x}^0
 - 2 Set k = 0
 - 3 while \mathbf{x}^k is not locally optimal **do**
 - 4 Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^k
 - 5 Set k = k + 1
 - 6 end while
- Generates sequence of feasible solutions $\mathbf{x}^0, \mathbf{x}^1, \dots$
- In general, improving search converges to a local optimal solution, not a global optimal solution
- Today: concentrate on Step 4 finding better solutions
- How do we move from one solution to the next?

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \lambda \mathbf{d}$$

• For example:

Improving directions

- We want to choose **d** so that \mathbf{x}^{k+1} has a better value than \mathbf{x}^k
- A vector d is an improving direction at the current solution x^k if the value of x^k + λd is better than the value of x^k for all positive λ "close" to 0
- How do we find an improving direction?
- The **directional derivative** of *f* in the direction **v** is
- Maximizing $f: \mathbf{d}$ is an improving direction at \mathbf{x}^k if
- Minimizing $f: \mathbf{d}$ is an improving direction at \mathbf{x}^k if
- In Example 1:

• For LPs: if **d** is an improving direction at \mathbf{x}^k , then the value of $\mathbf{x}^k + \lambda \mathbf{d}$ improves as $\lambda \to \infty$

Step size

- We have an improving direction **d** now how far do we go?
- One idea: find maximum value of λ so that $\mathbf{x}^k + \lambda \mathbf{d}$ is still feasible
- Graphically, we can eyeball this
- Algebraically, we can compute this in Example 1:

Feasible directions

- Some improving directions don't lead to any new feasible solutions
- A constraint satisfied with equality at a feasible solution **x** is an **active constraint** at **x**
 - Also: tight constraints, binding constraints
- A direction **d** is a **feasible direction** at \mathbf{x}^k if $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all positive λ "close" to 0
- Again, graphically, we can eyeball this
- For LPs we have constraints of the form

 $a_1x_1 + a_2x_2 + \dots + a_nx_n \le b \quad \Leftrightarrow$

• For LPs, a direction **d** is feasible at a feasible solution **x** if

$$\mathbf{a}^{\mathsf{T}}\mathbf{d} \begin{cases} \leq \\ \geq \\ = \end{cases} 0 \quad \text{for each active constraint of the form} \quad \mathbf{a}^{\mathsf{T}}\mathbf{x} \begin{cases} \leq \\ \geq \\ = \end{cases} b$$

• In Example 1:

Detecting unboundedness

- Suppose **d** is an improving direction at feasible solution **x**^{*k*} to an LP
- Suppose $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all $\lambda \ge 0$
- What can you conclude?

Summary

- Step 4 boils down to finding an improving and feasible direction **d** and an accompanying step size λ
- We have conditions on whether a direction is improving and feasible
- We don't know how to find such directions... yet