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Asst. Prof. Nelson Uhan

Lesson 18. Improving Search: Convexity and Optimality

0 Warm up – last time...

● General optimization model with continuous variables

○ Decision variables: x = (x1, . . . , xn)
○ Multivariable functions in x: f (x), gi(x) for i ∈ {1, . . . ,m}, not necessarily linear
○ Constant scalars: bi for i ∈ {1, . . . ,m}

maximize f (x)

subject to gi(x)
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bi for i ∈ {1, . . . ,m}

● Moving from one solution to the next: xk+1 = xk + λd

● d is feasible at xk “if it points towards feasible solutions”

● d is improving at xk “if it points towards solutions with better (objective function) value”

Example 1. Consider the LP below and the graph of its feasible region. Let xk = (0, 2) and d = (0,−1).

a. Is d a feasible direction at xk? Why?
b. Let λ = 1. Compute xk+1.
c. What is the change in value from xk to xk+1?
d. Is d an improving direction at xk? Why?

minimize 3x1 + x2
subject to 3x1 + 4x2 ≤ 12 (1)

x1 ≥ 0 (2)
x2 ≥ 0 (3)

3x1 + 4x2 ≤ 12 ↓

x1

x2

1 2 3 4

1

2

3

4

1



1 Today...

● General improving search algorithm

1 Find an initial feasible solution x0
2 Set k = 0
3 while xk is not locally optimal do
4 Determine a new feasible solution xk+1 that improves the objective value at xk
5 Set k = k + 1
6 end while

● Step 3 – Improving search converges to local optimal solutions, which aren’t necessarily globally optimal

● Wishful thinking: does locally optimal ever mean globally optimal?

2 Convex sets

Example 2. Let x = (1, 1) and y = (4, 3). Plot λx + (1 − λ)y for λ ∈ {0, 1/3, 2/3, 1}.
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● Given two solutions x and y, the line segment joining them is

λx + (1 − λ)y for λ ∈ [0, 1]

● A feasible region S is convex if for all x, y ∈ S, then λx + (1 − λ)y ∈ S for all λ ∈ [0, 1]

○ A feasible region is convex if for any two solutions in the region, all solutions on the line segment
joining these solutions are also in the region

● Geometrically: convex vs. nonconvex
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Example 3. Show that the feasible region of the LP in Example 1 is convex.

● In general, the feasible region of an LP is convex

3 Convex functions

● Given a convex feasible region S, a function f (x) is convex if for all solutions x, y ∈ S and for all λ ∈ [0, 1]

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)

● Example:

x

f (x)

x y

Example 4. Show that the objective function of the LP in Example 1 is convex.

● In general, the objective function of an LP – a linear function – is convex
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4 Minimizing convex functions over convex sets

Big �eorem. Suppose we are minimizing a convex function f (x) over a convex feasible region S. If an
improving search algorithm stops at a local minimum x, then x is a global minimum.

Proof. ● By contradiction – suppose x is not a global minimum

● �en there must be another feasible solution y ∈ S such that f (y) < f (x)

● Take λx + (1 − λ)y really close to x (λ really close to 1)

● Since the feasible region S is convex, λx + (1 − λ)y is also in S (and therefore feasible)

● We have that:

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) (since f is convex)
< λ f (x) + (1 − λ) f (x) (since f (y) < f (x))
= f (x)

● �erefore: f (λx + (1 − λ)y) < f (x)

● λx + (1 − λ)y is a feasible solution in the neighborhood of x with better objective value than x

● �is contradicts x being a local minimum!! xmust be a global minimum. QED.

● Since the objective function of an LP is convex, and the feasible region of an LP is convex:

Big Corollary 1. A global minimum of a linear program can be found with an improving search algorithm.

● A similar theorem and corollary exists when maximizing concave functions over convex sets

○ See pages 222–225 in Rader for details

Big Corollary 2. A global maximum of a linear program can be found with an improving search algorithm.
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