SA305 - Linear Programming Spring 2013
Asst. Prof. Nelson Uhan

Lesson 18. Improving Search: Convexity and Optimality

0 Warm up - last time...
o General optimization model with continuous variables

o Decision variables: x = (x1,...,xy,)
o Multivariable functions in x: f(x), g;(x) for i € {1,..., m}, not necessarily linear

o Constant scalars: b; fori € {1,...,m}

maximize f(x)

subjectto  g;(x) b; forie{l,...,m}

I v IA

e Moving from one solution to the next: xF = xk 4+ Ad

e dis feasible at x* “if it points towards feasible solutions”

e disimproving at x* “if it points towards solutions with better (objective function) value”

Example 1. Consider the LP below and the graph of its feasible region. Let x* = (0,2) and d = (0, -1).

. Is d a feasible direction at x*? Why?

. Let A = 1. Compute x**!,

. What is the change in value from x* to x
. Is d an improving direction at x¥? Why?

k+1,

an o

minimize 3x;+ x,

subjectto  3x; +4x; <12 (1)




Today...

e General improving search algorithm

Find an initial feasible solution x°

Setk=0
while x* is not locally optimal do

Setk=k+1
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Determine a new feasible solution x**! that improves the objective value at x*

e Step 3 - Improving search converges to local optimal solutions, which aren’t necessarily globally optimal

e Wishful thinking: does locally optimal ever mean globally optimal?

2 Convex sets

Example 2. Letx = (1,1) andy = (4,3). Plot Ax + (1- 1)y for A € {0,1/3,2/3,1}.
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e Given two solutions x and y, the line segment joining them is

Ax+ (1-A)y forie[0,1]

e A feasible region S is convex if for all x,y € S, then Ax + (1-A)y € Sforall A € [0,1]

o A feasible region is convex if for any two solutions in the region, all solutions on the line segment
joining these solutions are also in the region

e Geometrically: convex vs. nonco

nvex




Example 3. Show that the feasible region of the LP in Example 1 is convex.

o In general, the feasible region of an LP is convex

3 Convex functions
e Given a convex feasible region S, a function f(x) is convex if for all solutions x,y € S and forall A € [0,1]
fOx+(1-Vy) <Af(x) +(1-1)f(y)

e Example:

f(x)

Example 4. Show that the objective function of the LP in Example 1 is convex.

¢ In general, the objective function of an LP - a linear function - is convex



4 Minimizing convex functions over convex sets

Big Theorem. Suppose we are minimizing a convex function f(x) over a convex feasible region S. If an
improving search algorithm stops at a local minimum x, then x is a global minimum.

Proof. e By contradiction — suppose x is not a global minimum
o Then there must be another feasible solution y € S such that f(y) < f(x)
o Take Ax + (1— A)y really close to x (A really close to 1)
e Since the feasible region S is convex, Ax + (1 - 1)y is also in S (and therefore feasible)

e We have that:

fAx+(1-V)y) <Af(x)+(1-L1)f(y) (since f is convex)
<Af(x)+(A-A)f(x)  (since f(y) < f(x))
=f(x)

e Therefore: f(Ax+ (1-1)y) < f(x)

e Ax+ (1- 1)y is a feasible solution in the neighborhood of x with better objective value than x

¢ This contradicts x being a local minimum!! x must be a global minimum. QED.

e Since the objective function of an LP is convex, and the feasible region of an LP is convex:

Big Corollary 1. A global minimum of a linear program can be found with an improving search algorithm.

e A similar theorem and corollary exists when maximizing concave functions over convex sets

o See pages 222-225 in Rader for details

Big Corollary 2. A global maximum of a linear program can be found with an improving search algorithm.



