Lesson 18. Improving Search: Convexity and Optimality

0 Warm up - last time...

- General optimization model with continuous variables
 - Decision variables: $\mathbf{x} = (x_1, \dots, x_n)$
 - Multivariable functions in **x**: $f(\mathbf{x})$, $g_i(\mathbf{x})$ for $i \in \{1, ..., m\}$, not necessarily linear
 - \circ Constant scalars: b_i for $i \in \{1, ..., m\}$

maximize
$$f(\mathbf{x})$$

subject to
$$g_i(\mathbf{x})$$
 $\begin{cases} \leq \\ \geq \\ = \end{cases}$ b_i for $i \in \{1, ..., m\}$

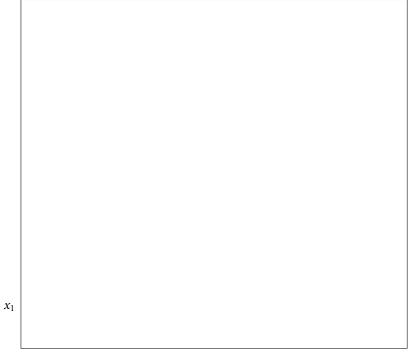
- Moving from one solution to the next: $\mathbf{x}^{k+1} = \mathbf{x}^k + \lambda \mathbf{d}$
- **d** is **feasible** at \mathbf{x}^k "if it points towards feasible solutions"
- \mathbf{d} is **improving** at \mathbf{x}^k "if it points towards solutions with better (objective function) value"

Example 1. Consider the LP below and the graph of its feasible region. Let $\mathbf{x}^k = (0, 2)$ and $\mathbf{d} = (0, -1)$.

- a. Is **d** a feasible direction at \mathbf{x}^k ? Why?
- b. Let $\lambda = 1$. Compute \mathbf{x}^{k+1} .
- c. What is the change in value from \mathbf{x}^k to \mathbf{x}^{k+1} ?
- d. Is **d** an improving direction at \mathbf{x}^k ? Why?

minimize
$$3x_1 + x_2$$

subject to $3x_1 + 4x_2 \le 12$ (1)
 $x_1 \ge 0$ (2)
 $x_2 \ge 0$ (3)

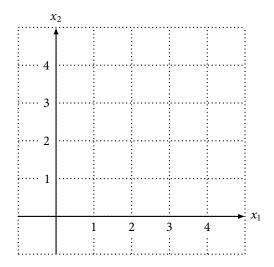


1 Today...

- General improving search algorithm
 - 1 Find an initial feasible solution \mathbf{x}^0
 - 2 Set k = 0
 - 3 **while** \mathbf{x}^k is not locally optimal **do**
 - Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^k
 - 5 Set k = k + 1
 - 6 end while
- Step 3 Improving search converges to local optimal solutions, which aren't necessarily globally optimal
- Wishful thinking: does locally optimal ever mean globally optimal?

2 Convex sets

Example 2. Let $\mathbf{x} = (1,1)$ and $\mathbf{y} = (4,3)$. Plot $\lambda \mathbf{x} + (1-\lambda)\mathbf{y}$ for $\lambda \in \{0,1/3,2/3,1\}$.



• Given two solutions **x** and **y**, the **line segment** joining them is

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$$
 for $\lambda \in [0, 1]$

- A feasible region *S* is **convex** if for all $\mathbf{x}, \mathbf{y} \in S$, then $\lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in S$ for all $\lambda \in [0, 1]$
 - A feasible region is convex if for any two solutions in the region, <u>all solutions on the line segment</u> joining these solutions are also in the region
- Geometrically: convex vs. nonconvex

Example 3. Show that the feasible region of the LP in Example 1 is convex.

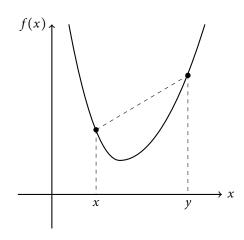
• In general, the feasible region of an LP is convex

3 Convex functions

• Given a convex feasible region *S*, a function $f(\mathbf{x})$ is **convex** if for all solutions $\mathbf{x}, \mathbf{y} \in S$ and for all $\lambda \in [0, 1]$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

• Example:



Example 4. Show that the objective function of the LP in Example 1 is convex.

I .		

• In general, the objective function of an LP – a linear function – is convex

4 Minimizing convex functions over convex sets

Big Theorem. Suppose we are minimizing a convex function $f(\mathbf{x})$ over a convex feasible region S. If an improving search algorithm stops at a local minimum \mathbf{x} , then \mathbf{x} is a global minimum.

Proof.

- By contradiction suppose **x** is not a global minimum
- Then there must be another feasible solution $y \in S$ such that f(y) < f(x)
- Take $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ really close to \mathbf{x} (λ really close to 1)
- Since the feasible region S is convex, $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ is also in S (and therefore feasible)
- We have that:

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \qquad \text{(since } f \text{ is convex)}$$
$$< \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{x}) \qquad \text{(since } f(\mathbf{y}) < f(\mathbf{x}))$$
$$= f(\mathbf{x})$$

- Therefore: $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) < f(\mathbf{x})$
- $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ is a feasible solution in the neighborhood of \mathbf{x} with better objective value than \mathbf{x}
- This contradicts **x** being a local minimum!! **x** must be a global minimum. QED.
- Since the objective function of an LP is convex, and the feasible region of an LP is convex:

Big Corollary 1. A global minimum of a linear program can be found with an improving search algorithm.

- A similar theorem and corollary exists when maximizing **concave** functions over convex sets
 - See pages 222–225 in Rader for details

Big Corollary 2. A global maximum of a linear program can be found with an improving search algorithm.