Lesson 29. Bounds and the Dual LP

1 Overview

- It is often useful to quickly generate lower and upper bounds on the optimal value of an LP
- Many algorithms for optimization problems that consider LP "subproblems" rely on this
- How can we do this?

2 Finding lower bounds

Example 1. Consider the following LP:

$$z^* = \text{maximize} \quad 2x_1 + 3x_2 + 4x_3$$

subject to $3x_1 + 2x_2 + 5x_3 \le 18$ (1)

$$5x_1 + 4x_2 + 3x_3 \le 16 \tag{2}$$

$$x_1, x_2, x_3 \ge 0 \tag{3}$$

We denote the optimal value of this LP by z^* . Give a feasible solution to this LP and its value. How does this value compare to z^* ?

- For a maximization LP, any feasible solution gives a lower bound on the optimal value
- We want the greatest lower bound possible (i.e. the lower bound closest to the optimal value)

3 Finding upper bounds

- We want the lowest upper bound possible (i.e. the upper bound closest to the optimal value)
- For the LP in Example 1, we can show that the optimal value z^* is at most 27
 - Any feasible solution (x_1, x_2, x_3) must satisfy constraint (1)
 - \Rightarrow Any feasible solution (x_1, x_2, x_3) must also satisfy constraint (1) multiplied by 3/2 on both sides:

0	The nonnegativity bounds (3) imply that any feasible solution (x_1, x_2, x_3) must satisfy
0	Therefore, any feasible solution, including the optimal solution, must have value at most 27
• We c	an do better: we can show $z^* \le 25$:
0	Any feasible solution (x_1, x_2, x_3) must satisfy constraints (1) and (2)
\Rightarrow	Any feasible solution (x_1, x_2, x_3) must also satisfy $(\frac{1}{2} \times \text{constraint (1)}) + \text{constraint (2)}$:
0	The nonnegativity bounds (3) then imply that any feasible solution (x_1, x_2, x_3) must satisfy
E xample 2 han 25.	. Combine the constraints (1) and (2) of the LP in Example 1 to find a better upper bound on z^*
• Let's	generalize this process of combining constraints
• Let <i>y</i>	y_1 be the "multiplier" for constraint (1), and let y_2 be the "multiplier" for constraint (2)
	require $y_1 \ge 0$ and $y_2 \ge 0$ so that multiplying constraints (1) and (2) by these values keeps the ualities as " \le "
• We a	lso want:

•	Since we wan	t the	lowest	upper	bound,	we	want:
---	--------------	-------	--------	-------	--------	----	-------

I		
I		
I		
I		

• Putting this all together, we can find the multipliers that find the best lower upper bound with the following LP!

minimize
$$18y_1 + 16y_2$$
subject to
$$3y_1 + 5y_2 \ge 2$$

$$2y_1 + 4y_2 \ge 3$$

$$5y_1 + 3y_2 \ge 4$$

$$y_1 \ge 0, y_2 \ge 0$$

- This is the **dual LP**, or simply the **dual** of the LP in Example 1
- The LP in example is referred to as the **primal LP** or the **primal** the original LP

4 In general...

- Every LP has a dual
- For minimization LPs
 - o Any feasible solution gives an upper bound on the optimal value
 - o One can construct a dual LP to give the greatest lower bound possible
- We can generalize the process we just went through to develop some mechanical rules to construct duals

5 Constructing the dual LP

- 0. Rewrite the primal so all variables are on the LHS and all constants are on the RHS
- 1. Assign each primal constraint a corresponding dual variable (multiplier)
- 2. Write the dual objective function
 - The objective function coefficient of a dual variable is the RHS coefficient of its corresponding primal constraint
 - The dual objective sense is the opposite of the primal objective sense
- 3. Write the dual constraint corresponding to each primal variable
 - The dual constraint LHS is found by looking at the coefficients of the corresponding primal variable ("go down the column")
 - The dual constraint RHS is the objective function coefficient of the corresponding primal variable
- 4. Use the **SOB rule** to determine dual variable bounds (≥ 0 , ≤ 0 , free) and dual constraint comparisons (\leq , \geq , =)

	max LP	\leftrightarrow	min LP	
sensible	≤ constraint	\leftrightarrow	$y_i \ge 0$	sensible
odd	= constraint	\leftrightarrow	y_i free	odd
bizarre	≥ constraint	\leftrightarrow	$y_i \leq 0$	bizarre
sensible	$x_i \ge 0$	\leftrightarrow	≥ constraint	sensible
odd	x_i free	\leftrightarrow	= constraint	odd
bizarre	$x_i \leq 0$	\leftrightarrow	≤ constraint	bizarre

Example 3. Take the dual of the following LP:

minimize
$$10x_1 + 9x_2 - 6x_3$$

subject to $2x_1 - x_2 \ge 3$
 $5x_1 + 3x_2 - x_3 \le 14$
 $x_2 + x_3 = 1$
 $x_1 \ge 0, x_2 \le 0, x_3 \ge 0$

• The dual of the dual is the primal

o Try it with the dual you just found