Lesson 30. Weak and Strong Duality

0 Warm up

Example 1. Consider the following LP and its equivalent canonical form LP:

maximize	$2x_1 + x_2$	maximize	$2x_1 + x_2$
subject to	$x_1 + 2x_2 \le 8$	subject to	$x_1 + 2x_2 + s_1 = 8$
	$3x_1 + x_2 \le 9$		$3x_1 + x_2 + s_2 = 9$
	$x_1, x_2 \ge 0$		$x_1, x_2, s_1, s_2 \ge 0$

Define the decision variable vector $\mathbf{x} = (x_1, x_2, s_1, s_2)$. Solve the canonical form LP using the simplex method, with initial BFS $\mathbf{x}^0 = (3, 0, 5, 0)$ with basis $\mathcal{B}^0 = \{x_1, s_1\}$.

Example 2. Consider the following LP and its equivalent canonical form LP:

minimize
$$8y_1 + 9y_2$$
 minimize $8y_1 + 9y_2$
subject to $y_1 + 3y_2 \ge 2$ subject to $y_1 + 3y_2 - s_1 = 2$
 $2y_1 + y_2 \ge 1$ $2y_1 + y_2 - s_2 = 1$
 $x_1, x_2 \ge 0$ $y_1, y_2, s_1, s_2 \ge 0$

Define the decision variable vector $\mathbf{y} = (y_1, y_2, s_1, s_2)$. Solve the canonical form LP using the simplex method, with initial BFS $\mathbf{y}^0 = (0, 1, 1, 0)$ with basis $\mathcal{B}^0 = \{y_2, s_1\}$.

1 Weak duality

• Consider the following primal-dual pair of LPs

[P] maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

[D] minimize
$$\mathbf{b}^{\mathsf{T}}\mathbf{y}$$

subject to $A^{\mathsf{T}}\mathbf{y} \ge \mathbf{c}$
 $\mathbf{y} \ge \mathbf{0}$

• Remember we constructed the dual in such a way that the multipliers **y** give us an upper bound on the optimal value of [P]

Weak Duality Theorem. Let \mathbf{x}^* be a feasible solution to [P], and let \mathbf{y}^* be a feasible solution to [D]. Then

$$c^\top x^* \leq b^\top y^*$$

Corollary 1. If \mathbf{x}^* is a feasible solution to [P], \mathbf{y}^* is a feasible solution to [D], and

$$\mathbf{c}^{\top}\mathbf{x}^{*} = \mathbf{b}^{\top}\mathbf{y}^{*}$$

then (i) \mathbf{x}^* is an optimal solution to [P] and (ii) \mathbf{y}^* is an optimal solution to [D].

Corollary 2. If [P] is unbounded, then [D] must be infeasible.					

Corollary 3. If [D] is unbounded, then [P] must be infeasible.

Proof. Similar to the previous corollary.

- Note that primal infeasibility does not imply dual unboundedness
- It is possible that both primal and dual LPs are infeasible
 - o See Rader p. 328 for an example
- All these theorems and corollaries apply to <u>arbitrary</u> primal-dual LP pairs, not just the ones we specified above

2 Strong duality

Strong Duality Theorem. Let [P] denote a primal LP and [D] its dual.

- a. If [P] has a finite optimal solution, then [D] also has a finite optimal solution with the same objective function value.
- b. If [P] and [D] both have feasible solutions, then
 - [P] has a finite optimal solution **x***;
 - [D] has a finite optimal solution y*;
 - the optimal values of [P] and [D] are equal.
- This is an AMAZING fact
- Useful from theoretical, algorithmic, and modeling perspectives
- Even the simplex method implicitly uses duality: the reduced costs are essentially dual solutions that are infeasible until the last step