Lesson 35. Introduction to Networks and the Shortest Path Problem

Today...

• What is the shortest way to get from Point A to Point B?

Graphs and networks

- Graphs model how various entities are connected
- A directed graph or network (V, A) consists of
 - set of **vertices** *V* (also known as **nodes**)
 - set of arcs A
 - arcs are directed from one vertex to another
 - \diamond arc from vertex *i* to vertex *j* is denoted by (i, j)

Example 1.

Networks are everywhere

- Physical networks
 - Road networks
 - Airline traffic networks
- Abstract networks
 - Organizational charts
 - Precedence relationships in projects
- Others?

Paths

- A **path** is a sequence of arcs connecting two specified vertices in a graph:
 - Each arc must have exactly one node in common with its predecessor in the sequence
 - Arcs must be passed in the forward direction
 - $\circ~$ No vertex may be visited more than once

Example 2. Give an example of a path from vertex 1 to vertex 4 in the network in Example 1.

The shortest path problem

- Network (V, A)
- Each arc (i, j) in *A* has a **length** (or cost) c_{ij}
- Designate
 - $\circ~$ one vertex in the network as the **source** s
 - $\circ~$ another vertex in the network as the **sink** t
- What is the shortest path from *s* to *t*?

Example 3. Consider the network given in Example 1, with the following arc lengths: $c_{12} = 5$, $c_{13} = 4$, $c_{23} = 6$, $c_{24} = 3$, $c_{34} = 4$. Write an optimization model that finds the shortest path from vertex 1 to vertex 4.