Lesson 1. Introduction

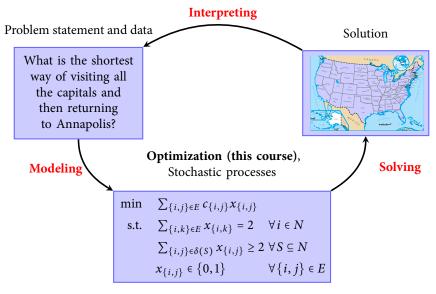
What is operations research?

- "The most influential academic discipline field you've never heard of" [Boston Globe, 2004]
- Operations Research (OR) is the discipline of applying advanced mathematical methods to help make better decisions
- "The Science of Better"

[INFORMS slogan]

- "A liberal education in a technological world" [Thomas Magnanti, former Dean of Engineering at MIT]
- Numerous applications, e.g.
 - logistics
 - manufacturing
 - workforce scheduling
 - finance
 - marketing

OR and the military


- The military uses OR to improve decision making in a variety of ways, e.g.
 - force composition
 - weapon selection
 - search and detection
 - flight operations scheduling
 - training and personnel assignment
- Assessment Division (OPNAV N81) at the Pentagon
- The Naval Postgraduate School has one of the oldest and highest ranking OR departments in the US
- Naval Research Logistics is a prominent academic journal featuring research in OR

The traveling salesperson problem

- A salesperson located in Annapolis wants to visit clients in each of the 48 state capitals of the continental US and Washington DC
- What is shortest way of visiting all the capitals and then returning to Annapolis?
- Entire books have been written on the TSP

- 1962: contest by Proctor and Gamble best TSP tour through 33 US cities
- 1998: The Florida Sun-Sentinel's Science page ponders Santa Claus's traveling problem
- One of the most popular problems in operations research
- Numerous applications in expected and unexpected places
 - Circuit board manufacturing
 - Genome sequencing
- Your turn! Try to find the shortest way of visiting all the capitals and then returning to Annapolis
- What about 13,509 cities in the US?
- Sophisticated mathematical techniques are our best bet

The OR approach

Mathematical model

Goals for this course

- Modeling
 - Recognize opportunities for mathematical optimization
 - Formulate optimization models linear programs that capture the essence of the problem
 - Illustrate applications of real-world problems
- Solving
 - Algorithms to solve these mathematical models
- Detailed topic list and schedule is on the syllabus

Optimization is everywhere

- "Minimize" time it takes to get from class to class
- "Maximize" the company's profits
- (Moneyball) "Best" lineup for the Oakland A's
- We are always trying to make **decisions** in a way that meets some **objective** subject to some **constraints**
- Some success stories of optimization helping solve complex real-world decision-making problems ...

Package delivery

• Decis	ion:
• Obje	tive:
• Cons	raints:
	credits optimization-based planning tools with identifying operational changes that have saved million to date, reduced planning times, peak and non-peak costs, fleet requirements
over	87 million to date, reduced planning times, peak and non-peak costs, fleet requirements
over	87 million to date, reduced planning times, peak and non-peak costs, fleet requirements
over orts sche • ACC	187 million to date, reduced planning times, peak and non-peak costs, fleet requirements duling Basketball earns over \$30 million in revenue annually, almost all from TV and radio etworks need a steady stream of "high quality" games, NCAA rules, school preferences and tra-
over orts scho ACC TV n	duling Basketball earns over \$30 million in revenue annually, almost all from TV and radio etworks need a steady stream of "high quality" games, NCAA rules, school preferences and trass
over orts scho ACC TV n dition	duling Basketball earns over \$30 million in revenue annually, almost all from TV and radio etworks need a steady stream of "high quality" games, NCAA rules, school preferences and tra- s
• ACC • TV n dition	duling Basketball earns over \$30 million in revenue annually, almost all from TV and radio etworks need a steady stream of "high quality" games, NCAA rules, school preferences and trass

• Constraints:
Optimization approaches yields reasonable schedules very quickly
Radiation therapy
• High doses of radiation can kill cancer cells and/or prevent them from growing and dividing
Can also kill healthy cells!
Radiation can be delivered at different angles and intensities
• Decision:
Objective:
• Constraints:
• Many successes reported using different types of optimization models
Next time

Ne

- Introduction to optimization models
- Homework posted on course website
 - Read the course policy statement
 - Watch out for an e-mail from POET and make sure you can log in

http://www.hivelab.org/POET

- Bring your laptop to class