Lesson 5. Work Scheduling Models

Example 1. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday (1)	7
Tuesday (2)	8
Wednesday (3)	7
Thursday (4)	6
Friday (5)	6
Saturday (6)	4
Sunday (7)	5

Write a linear program that determines the minimum total number of employees needed. You may assume that fractional solutions are acceptable.

$$\frac{\text{DVs}}{\text{Vs}} = \text{\#employees working on day 1}$$

$$x_2 = \text{""} 2$$

Problem: How can we express "5 consecutive days followed by 2 days off"?

DVs: $x_1 = \#employees$ working on day 1 $y_1 = \#employees$ who start on day 1 + end on day 5 $x_2 = """ 2 y_2 = \#employees$ who start on day 2 + end on day 6

 $x_1 = \# \text{ employees working on day 7}$ $y_7 = \# \text{ employees who start on day 7} + \text{ end on day 4}$ Sun, Mon, Tue, Wed, Thu

min
$$y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7$$

S.t. $y_1 + y_4 + y_5 + y_6 + y_7 > 7$ (Mon)
Which employees have a shift that includes Monday?

Example 2. At Melanie's Kitchen, tables are set and cleared by runners working 4-hour shifts that start on the hour, from 5am to 10am. For example, the shift that starts at 9am ends at 1pm. Melanie's pays \$7 per hour for the shifts that start at 5am, 6am, and 7am, and \$6 per hour for the shifts that start at 8am, 9am, and 10am. Past experience indicates that the following number of runners are needed at each hour of operation:

Hour	Number of runners required
5am-6am	2
6am-7am	3
7am-8am	5
8am-9am	5
9am-10am	4
10am-11am	3
11am-12pm	2
12pm-1pm	5
1pm-2pm	6

Formulate a linear program that determines a cost-minimizing staffing plan. You may assume that fractional solutions are acceptable.

DVs:
$$x_5 = \# runners$$
 starting at 5am and ending at 9am $x_6 = "$
 $x_{10} = \# runners$ starting at 10am and ending at 2pm

min $28(x_5 + x_6 + x_7) + 24(x_8 + x_9 + x_{10})$

s.t. $x_5 \ge 2$ (5-6)

 $x_5 + x_6 \ge 3$ (6-7)

 $x_5 + x_6 + x_7 \ge 5$ (7-8)

 $x_5 + x_6 + x_7 + x_8 \ge 5$ (8-9)

 $x_6 + x_7 + x_8 + x_9 \ge 4$ (9-10)

 $x_7 + x_8 + x_9 + x_{10} \ge 3$ (10-11)

 $x_8 + x_9 + x_{10} \ge 2$ (11-12)

 $x_9 + x_{10} \ge 5$ (12-1)

 $x_{10} \ge 6$ (1-2)

 $x_5 \ge 0$, $x_6 \ge 0$, ..., $x_{10} \ge 0$ (nonnegativity)