Lesson 13. Work Scheduling Models, Revisited

1 The postal workers problem, revisited

Example 1. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday (1)	7
Tuesday (2)	8
Wednesday (3)	7
Thursday (4)	6
Friday (5)	6
Saturday (6)	4
Sunday (7)	5

We want to determine the minimum total number of employees needed.

Our original model:

Decision variables. Let

 x_1 = number of employees who start work on Monday and work though Friday

 x_2 = number of employees who start work on Tuesday and work though Saturday

÷

 x_7 = number of employees who start work on Sunday and work through Thursday

Objective function and constraints.

min	$x_1 + x_2 + x_3 + x_4$	$+ x_5 + x_6 + x_7$	
s.t.	$x_1 + x_4$	$x_{5} + x_{5} + x_{6} + x_{7} \ge 7$ ((Mon)
	$x_1 + x_2$	$+ x_5 + x_6 + x_7 \ge 8$	(Tue)
	$x_1 + x_2 + x_3$	$+x_6 + x_7 \ge 7$	(Wed)
	$x_1 + x_2 + x_3 + x_4$	$+x_7 \ge 6$	(Thu)
	$x_1 + x_2 + x_3 + x_4$	$x_5 \ge 6$	(Fri)
	$x_2 + x_3 + x_4$	$x_5 + x_5 + x_6 \ge 4$	(Sat)
	$x_3 + x_4$	$x_{5} + x_{5} + x_{6} + x_{7} \ge 5$	(Sun)
	$x_1, x_2, x_3, x_4,$, x_5 , x_6 , $x_7 \ge 0$	

- Left hand side of (Mon): add up the variables x_i such that shift *i* covers Monday
- We need a way to specify elements of a set that meet certain characteristics

2 Some more set notation

- What if we only want certain elements of a set?
- ":" notation

 $j \in S$: [condition] \Leftrightarrow $j \in$ elements of S such that [condition] holds

- For example:
 - Define $N = \{1, 2, 3\}, S_1 = \{a, b\}, S_2 = \{b, c\}, S_3 = \{a, c\}$
 - Then
 - $\circ \ j \in N : j \ge 2 \quad \Leftrightarrow$ $\circ \ j \in N : a \in S_j \quad \Leftrightarrow$
- Some people use "|" instead ":"

Describe the input parameters of Example 1 using sets and for statements.

Write a linear program for Example 1 using the symbolic input parameters you described above.

3 GMPL code

GMPL model file for this linear program:

```
# Model for postal employees problem in Lesson 13
## Input parameters ##
set days;
                                # days of the week
set shifts;
                                # shifts
set shift_days{j in shifts};
                                # days worked for each shift
param required{i in days};
                                # number of employees needed for each day
## Decision variables and variable bounds ##
var x{j in shifts} >= 0;
                                # number of employees assigned to each shift
## Objective function ##
# Minimize total number of employees
minimize total_employees: sum{j in shifts} x[j];
## General constraints ##
# Number of employees working on day i >= minimum required on day i
subject to employees_needed{i in days}:
  sum{j in shifts: i in shift_days[j]} x[j] >= required[i];
```

end;

GMPL data file for this linear program:

```
# Days of the week
set days := Mon Tue Wed Thu Fri Sat Sun;
# Shifts
set shifts := 1 2 3 4 5 6 7;
# Days worked in each shift
set shift_days[1] := Mon Tue Wed Thu Fri;
set shift_days[2] := Tue Wed Thu Fri Sat;
set shift_days[3] := Wed Thu Fri Sat Sun;
set shift_days[4] := Thu Fri Sat Sun Mon;
set shift_days[5] := Fri Sat Sun Mon Tue;
set shift_days[6] := Sat Sun Mon Tue Wed;
set shift_days[7] := Sun Mon Tue Wed Thu;
# Number of employees needed for each day
param required :=
 Mon
       7
 Tue
      8
 Wed
      7
 Thu
       6
 Fri
       6
 Sat
       4
 Sun
      5;
```

end;