Lesson 14. Production Process Models, Revisited

Example 1. Yobro Co. produces three types of high-end organic, bio-diverse, fair-trade, non-harmful-toanimals household cleaners: standard, pine, and lemon. Each gallon of raw soap produces a_s gallons of standard, a_p gallons of pine, and a_ℓ gallons of lemon. Each gallon of standard can be converted directly into b_{sp} gallons of pine at a cost of c_{sp} per gallon. Separately, each gallon of standard can also be converted into $b_{s\ell}$ gallons of lemon at a cost of $c_{s\ell}$ per gallon. Raw soap costs c_r per gallon. Standard, pine, and lemon sell for v_s , v_p , and v_ℓ per gallon, respectively. Suppose that Yobro wants to satisfy demand for d_s gallons of standard, d_p of pine, and d_{ℓ} gallons of lemon.

- a. Write a linear program that determines the number of gallons of each type of cleaner Yobro should make in order to maximize profit. Make sure to
 - define the input parameters,
 - · define the decision variables, and
 - briefly explain the objective function and constraints that you write.

Input parameters

$$x_{\bar{i}} = gal.$$
 cleaner i sold, for ieC

max
$$\sum_{i \in C} v_i x_i - C_r r - \sum_{i \in I_2, l_3} C_{si} x_{si}$$
 (total profit)

st.
$$a_s r = x_s + x_{sp} + x_{sl}$$
 (std. balance)
 $a_p r + b_{sp} x_{sp} = x_p$ (pine balance)
 $a_l r + b_{sl} x_{sl} = x_l$ (lemon balance)

$$a_p r + b_{sp} x_{sp} = x_p$$
 (pine balance)

$$A.r + b.(x) = x$$
 (lemon balance)

b. YoBro just tweeted that they have created an additional process that converts standard to pine and lemon simultaneously. With this process, each gallon of standard converts to f_{sp} gallons of pine and $f_{s\ell}$ gallons of lemon at a cost of $c_{sp\ell}$ per gallon. How do you change the linear program you just wrote to account for this new process?

Add input parameters: $f_{sp} = gal$. pine produced from l gal. standard $\frac{1}{2}$ new process $f_{sl} = gal$. lemon produced from l gal. standard $\frac{1}{2}$ new process $C_{spl} = cost$ of converting l gal. standard $\frac{1}{2}$ new process

Add DV: $x_{spl} = gal$ standard converted to pine + lemon \(\forall \) new process

Add to obj. fn.: - Cspl Xspl

Change balance constraints (*): $a_s r = x_s + x_{sp} + x_{sl} + x_{spl}$ (std. bal.) $a_p r + b_{sp} x_{sp} + f_{sp} x_{spl} = x_p \quad (pine bal.)$ $a_l r + b_{sl} x_{sl} + f_{sl} x_{spl} = x_l \quad (lemon bal.)$ That captures these 2