Lesson 17. Improving Search: Finding Better Solutions

1 Overview

- Last time: a general optimization model with only continuous variables
 - Decision variables: $\mathbf{x} = (x_1, \dots, x_n)$
 - Multivariable functions in **x**: $f(\mathbf{x})$ and $g_i(\mathbf{x})$ for $i \in \{1, ..., m\}$
 - ∘ Constant scalars: b_i for $i \in \{1, ..., m\}$

minimize / maximize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \begin{cases} \leq \\ \geq \\ = \end{cases} b_i$ for $i \in \{1, ..., m\}$ (*)

- o Linear programs fit into this framework
- Also last time: preview of the improving search algorithm
 - Start at a feasible solution
 - o Repeatedly move to a "close" feasible solution with better objective function value
- Today: let's start formalizing these ideas behind improving search

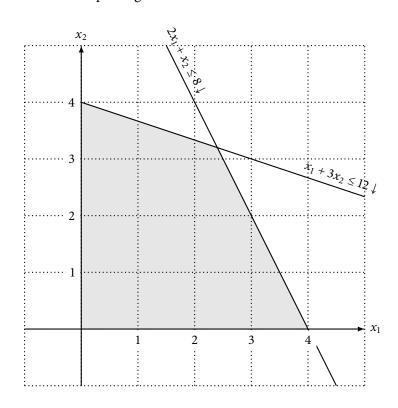
(4)

Example 1.

maximize
$$4x_1 + 2x_2$$

subject to $x_1 + 3x_2 \le 12$ (1)
 $2x_1 + x_2 \le 8$ (2)
 $x_1 \ge 0$ (3)

 $x_2 \ge 0$



2 Local and global optimal solutions

• ε -neighborhood $N_{\varepsilon}(\mathbf{x})$ of a solution $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ (where $\varepsilon > 0$):

$$N_{\varepsilon}(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{R}^n : \text{distance}(\mathbf{x}, \mathbf{y}) \le \varepsilon \}$$
 where $\text{distance}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$

• A feasible solution **x** to optimization model (*) is **locally optimal** if for some value of $\varepsilon > 0$:

 $f(\mathbf{x})$ is better than $f(\mathbf{y})$ for all feasible solutions $\mathbf{y} \in N_{\varepsilon}(\mathbf{x})$

• A feasible solution **x** to optimization model (*) is **globally optimal** if:

 $f(\mathbf{x})$ is better than $f(\mathbf{y})$ for all feasible solutions \mathbf{y}

- Also known simply as an **optimal solution**
- Global optimal solutions are locally optimal, but not vice versa
- In general: harder to check for global optimality, easier to check for local optimality

3 The improving search algorithm

- 1 Find an initial feasible solution \mathbf{x}^0
- 2 Set k = 0
- 3 **while** \mathbf{x}^k is not locally optimal **do**
- Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^k
- 5 Set k = k + 1
- 6 end while
- Generates sequence of feasible solutions $\mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots$
- In general, improving search converges to a local optimal solution, not a global optimal solution
- Today: concentrate on Step 4 finding better feasible solutions

4 Moving between solutions

• How do we move from one solution to the next?

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \lambda \mathbf{d}$$

• For example:

5	Improving directions				
	• We want to choose d so that \mathbf{x}^{k+1} has a better value than \mathbf{x}^k				
	• d is an improving direction at solution \mathbf{x}^k if				
	$f(\mathbf{x}^k + \lambda \mathbf{d})$ is better than $f(\mathbf{x}^k)$ for all positive λ "close" to 0				
	• How do we find an improving direction?				
	$ullet$ The directional derivative of f in the direction ${f d}$ is				
	• Maximizing f : d is an improving direction at \mathbf{x}^k if				
	• Minimizing f : d is an improving direction at \mathbf{x}^k if				
	• In Example 1:				
	• For linear programs in general: if d is an improving direction at \mathbf{x}^k , then $f(\mathbf{x}^k + \lambda \mathbf{d})$ improves as $\lambda \to \infty$				
6	Step size				
U					
	• We have an improving direction d – now how far do we go?				
	• One idea: find maximum value of λ so that $\mathbf{x}^k + \lambda \mathbf{d}$ is still feasible				
	• Graphically, we can eyeball this				
	• Algebraically, we can compute this – in Example 1:				

7 Feasible directions

• Some improving directions don't lead to any new feasible solutions

• **d** is a **feasible direction** at feasible solution \mathbf{x}^k if $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all positive λ "close" to 0

• Again, graphically, we can eyeball this

• For linear programs:

• We have constraints of the form:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \begin{cases} \leq \\ \geq \\ = \end{cases} b \quad \Leftrightarrow \quad$$

 \circ **d** is a feasible direction at **x** if

$$\mathbf{a}^{\mathsf{T}}\mathbf{d} \left\{ \begin{array}{l} \leq \\ \geq \\ = \end{array} \right\} 0$$
 for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} \left\{ \begin{array}{l} \leq \\ \geq \\ = \end{array} \right\} b$

 \diamond A constraint is **active** at feasible solution **x** if it is satisfied with equality

• In Example 1:

8 Detecting unboundedness

 • Suppose ${\bf d}$ is an improving direction at feasible solution ${\bf x}^k$ to a <u>linear program</u>

• Also, suppose $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all $\lambda \geq 0$

• What can you conclude?

9 Summary

 • Step 4 boils down to finding an improving and feasible direction ${\bf d}$ and an accompanying step size λ

• We have <u>conditions</u> on whether a direction is improving and feasible

 $\bullet~$ We don't know how to systematically $\underline{\text{find}}$ such directions... yet