SA305 – Linear Programming Asst. Prof. Nelson Uhan

Lesson 22. Linear Programs in Canonical Form

0 Warm up

Example 1. Let

$$A = \begin{pmatrix} 1 & 9 & 8 \\ 5 & 2 & 3 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Compute Ax.

1 Canonical form

• LP in **canonical form** with decision variables x_1, \ldots, x_n :

minimize / maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad \text{for } i \in \{1, \dots, m\}$$

$$x_j \ge 0 \quad \text{for } j \in \{1, \dots, n\}$$

• In vector-matrix notation with decision variable vector $\mathbf{x} = (x_1, \dots, x_n)$:

minimize / maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

• A has *m* rows and *n* columns, **b** has *m* components, and **c** and **x** has *n* components

• We typically assume that $m \le n$, and $\operatorname{rank}(A) = m$

Spring 2014

Example 2. Identify **x**, **c**, *A*, and **b** in the following canonical form LP:

maximize
$$3x + 4y - z$$

subject to $2x - 3y + z = 10$
 $7x + 2y - 8z = 5$
 $x \ge 0, y \ge 0, z \ge 0$

- A canonical form LP always has at least 1 extreme point (if it is feasible)
 - $\circ~$ Intuition: if solutions in the feasible region must satisfy $x \geq 0,$ then the feasible region must be "pointed"

2 Converting any LP to an equivalent canonical form LP

- Inequalities → equalities
 - Slack and surplus variables "consume the difference" between the LHS and RHS
 - If constraint *i* is a \leq -constraint, add a slack variable s_i :

$$\sum_{j=1}^n a_{ij} x_j \le b_i \qquad \Rightarrow \qquad$$

• If constraint *i* is a \geq -constraint, subtract a surplus variable s_i :

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \qquad \Rightarrow$$

- Nonpositive variables → nonnegative variables
 - If $x_j \le 0$, then introduce a new variable x'_j and substitute $x_j = -x'_j$ everywhere in particular:
- Unrestricted ("free") variables → nonnegative variables
 - If x_j is unrestricted in sign, introduce 2 new nonnegative variables x_j^+, x_j^-
 - Substitute $x_j = x_j^+ x_j^-$ everywhere
 - Why does this work?
 - $\diamond~$ Any real number can be expressed as the difference of two nonnegative numbers

Example 3. Convert the following LPs to canonical form.

maximize	3x + 8y	minimize	$5x_1 - 2x_2 + 9x_3$
subject to	$x + 4y \le 20$	subject to	$3x_1 + x_2 + 4x_3 = 8$
	$x + y \ge 9$		$2x_1 + 7x_2 - 6x_3 \le 4$
	$x \ge 0$, <i>y</i> free		$x_1 \le 0, x_2 \ge 0, x_3 \ge 0$

3 Next time...

• Basic solutions of canonical form LPs