Lesson 23. Basic Solutions in Canonical Form LPs ## 1 Overview Recall that an LP in **canonical form** looks like this: minimize / maximize $$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$ subject to $A\mathbf{x} = \mathbf{b}$ (CF) $\mathbf{x} \ge \mathbf{0}$ Note that - (a) all the general constraints are equalities, and - (b) all the decision variables are constrained to be nonnegative. Also, recall that a solution \mathbf{x} of an LP with n decision variables is a **basic solution** if - (a) it satisfies all equality constraints, and - (b) at least *n* constraints are active at **x** and are linearly independent. The solution \mathbf{x} is a **basic feasible solution (BFS)** if it is a basic solution and satisfies all constraints of the LP. Today, we will investigate what basic solutions look like for canonical form LPs. ## 2 Example Consider the following canonical form LP: maximize $$3x + 8y$$ subject to $x + 4y + s_1 = 20$ (1) $x + y + s_2 = 9$ (2) $2x + 3y + s_3 = 20$ (3) $x \ge 0$ (4) $y \ge 0$ (5) $s_1 \ge 0$ (6) $s_2 \ge 0$ (7) $s_3 \ge 0$ (8) Identify the matrix A and the vectors \mathbf{c} , \mathbf{x} , and \mathbf{b} in the above canonical form LP. Hint. Let $\mathbf{x} = (x, y, s_1, s_2, s_3)$. | 11 | n. How many linearly independent constraints must be straints, and how many of these must be nonnegativity be | • | |---|--|------------------------| Verify that the constraints (| (1), (2), (3), (6), and (8) are linearly independent. (Use a | calculator or MATLAB.) | ution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6) negativity bounds (6) and (8), s_1 and s_3 are "forced" to be nonzero. | | | Substituting $s_1 = 0$ and $s_3 =$ | 0 into the other constraints (1), (2), and (3), we get: | | | | $x + 4y + (0) \qquad = 20$ | | | | $x + y + s_2 = 9$
2x + 3y + (0) = 20 | (*) | | | $2x + 3y \qquad \qquad + (0) = 20$ | | | Let <i>B</i> be the submatrix of <i>A</i> | A consisting of columns corresponding to variables x , y , | and s_2 : | | | $B = \begin{pmatrix} 1 & 4 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \end{pmatrix}$ | | | Verify that the columns of | B linearly independent. (Use a calculator or MATLAB.) | | | | <u> </u> | Note that (*) can be written as $B\begin{pmatrix} x \\ y \\ s_2 \end{pmatrix} = \mathbf{b}$ (** | |---| | Use B^{-1} (it exists, right?) to find the values of x , y , and s_2 . (Use a calculator or MATLAB.) | | | | | | | | | | Put your answers together: what is the basic solution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6), and (8) | | | | | | | | 3 Generalizing the example | | Now let's generalize what happened in the example above. Consider the generic canonical form LP (CF) or page 1. Suppose it has m equality constraints and n decision variables (e.g. A has m rows and n columns Assume that $m \le n$ and rank(A) = m . | | Suppose x is a basic solution. How many linearly independent constraints must be active at x ? | | | | Since \mathbf{x} satisfies $A\mathbf{x} = \mathbf{b}$, how many nonnegativity bounds must be active? | | | Generalizing our observations from the example, we have the following theorem. **Theorem.** Suppose \mathbf{x} is a basic solution of a canonical form LP. Then there exists a set of m variables of \mathbf{x} such that - (a) the columns of A corresponding to these m variables are linearly independent; - (b) the other n m variables are equal to 0. | Check your understanding of this theorem: back in the example, what is n and what is m ? Which variables correspond to m linearly independent columns of A ? Which $n-m$ variables are equal to 0? | |---| | | | | | | | Let <i>B</i> be the submatrix of <i>A</i> corresponding to these <i>m</i> variables, and let \mathbf{x}_B be the vector of these <i>m</i> variables Since the columns of <i>B</i> are linearly independent, these variables are the unique solution to the system $B\mathbf{x}_B = \mathbf{b}$ like (**) in the example. These <i>m</i> variables are potentially nonzero, while the other $n - m$ variables are forced to be zero. | | Given a basic solution x of a canonical form LP: | | a variable is basic if it corresponds to one of the <i>m</i> linearly independent columns of <i>A</i> defining x, a variable is nonbasic if it is not basic, the set of basic variables is referred to as the basis of x. | | In the basic solution \mathbf{x} you computed on page 2, which variables are basic? | | | | Which variables are nonbasic? | | | | What is the basis? | | | | |