Lesson 28. Degeneracy, Convergence, Multiple Optimal Solutions

0 Warm up

Example 1. Suppose we are using the simplex method to solve the following canonical form LP:

maximize
$$10x + 3y$$

subject to $x + y + s_1 = 4$ (1)
 $5x + 2y + s_2 = 11$ (2)
 $y + s_3 = 4$ (3)
 $x \ge 0$ (4)
 $y \ge 0$ (5)
 $s_1 \ge 0$ (6)
 $s_2 \ge 0$ (7)
 $s_3 \ge 0$ (8)

Let $\mathbf{x} = (x, y, s_1, s_2, s_3)$. Our current BFS is $\mathbf{x}^t = (0, 4, 0, 3, 0)$ with basis $\mathcal{B}^t = \{y, s_1, s_2\}$. The simplex directions are $\mathbf{d}^x = (1, 0, -1, -5, 0)$ and $\mathbf{d}^{s_3} = (0, -1, 1, 2, 1)$. Compute \mathbf{x}^{t+1} and \mathcal{B}^{t+1} .

- In the above example, the step size $\lambda_{max} = 0$
- As a result, $\mathbf{x}^{t+1} = \mathbf{x}^t$: it looks like our solution didn't change!
- The basis did change, however: $\mathcal{B}^{t+1} \neq \mathcal{B}^t$
- Why did this happen?

1	Degeneracy
-	Degeneracy

• A BFS x of an LP with n decision variables is degenerate if there are $\underline{\text{more}}$ than n constraints a	ctive at
\circ i.e. there are several collections of n linearly independent constraints that define the same	ne x
Example 2. Is \mathbf{x}^t in Example 1 degenerate? Why?	
• In $\mathbf{x}^t = (0, 4, 0, 3, 0)$ in Example 1, "too many" of the nonnegativity constraints are active	
• As a result, some of the <u>basic</u> variables are equal to zero	
• Recall: a BFS of a canonical form LP with <i>n</i> decision variables and <i>m</i> equality constraints has	1
o basic variables, potentially nonzero	
o nonbasic variables, always equal to 0	
• Suppose x is a degenerate BFS, with $n + k$ active constraints $(k \ge 1)$	
• Then nonnegativity bounds must be active, which is larger than $n - m$	
• Therefore: a BFS x of a canonical form LP is degenerate if	
• As a result, a degenerate BFS may correspond to several bases	
• e.g. in Example 1, the BFS (0, 4, 0, 3, 0) has bases:	
• Every step of the simplex method	
 does <u>not</u> necessarily move to a geometrically adjacent extreme point 	

 $\circ~$ Same BFS, different bases, different simplex directions

• At a degenerate BFS, the simplex method might "get stuck" for a few steps

 \circ Zero-length moves: $\lambda_{max} = 0$

 $\circ~$ does move to an adjacent BFS (in particular, the bases differ by exactly 1 variable)

- When $\lambda_{\text{max}} = 0$, just proceed as usual
- Simplex computations will normally escape a sequence of zero-length moves and move away from the current BFS

2 Convergence

- In extreme cases, degeneracy can cause the simplex method to cycle over a set of bases that all represent the same extreme point
 - o See Rader p. 291 for an example
- Can we guarantee that the simplex method terminates?
- Yes! Anticycling rules exist
- Easy anticycling rule: Bland's rule
 - Fix an ordering of the decision variables and rename them so that they have a common index • e.g. $(x, y, s_1, s_2, s_3) \rightarrow (x_1, x_2, x_3, x_4, x_5)$
 - Entering variable: choose nonbasic variable with <u>smallest index</u> among those corresponding to improving simplex directions
 - \circ Leaving variable: choose basic variable with smallest index among those that define λ_{max}

3 Multiple optimal solutions

- Suppose our current BFS is \mathbf{x}^t , and y is the entering variable
- The change in objective function value from \mathbf{x}^t to $\mathbf{x}^t + \lambda \mathbf{d}^y$ ($\lambda \ge 0$) is

- ⇒ We can use reduced costs to compute changes in objective function
- Suppose we solve a canonical form maximization LP with decision variables $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$ using the simplex method, and end up with:

$$\mathbf{x}^{t} = (0,150,0,200,50) \qquad \qquad \mathcal{B}^{t} = \{x_{2}, x_{4}, x_{5}\}$$

$$\mathbf{d}^{x_{1}} = \left(1, -\frac{1}{2}, 0, -\frac{3}{2}, -\frac{1}{2}\right) \qquad \qquad \mathbf{d}^{x_{3}} = \left(0, -\frac{1}{2}, 1, \frac{1}{2}, \frac{1}{2}\right)$$

$$\bar{c}_{x_{1}} = 0 \qquad \qquad \bar{c}_{x_{3}} = -25$$

• Is \mathbf{x}^t optimal?

• Are there multiple optimal solutions?

Arte uncre munique optimai solutions:

- In general, if there is a reduced cost equal to 0 at an optimal solution, there <u>may</u> be other optimal solutions
 - $\circ~$ The zero reduced cost must correspond to a simplex direction with $\lambda_{max}>0$