SA305 - Linear Programming Spring 2014
Asst. Prof. Nelson Uhan

Lesson 30. Weak and Strong Duality

1 Practice taking duals!

Example 1. State the dual of the following linear programs.
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2 Weak duality

e Consider the following primal-dual pair of LPs

[P] maximize c¢'x [D] minimize b'y
subjectto Ax<b subjectto A’y >c
x>0 y>0

e Remember we constructed the dual in such a way that the multipliers y give us an upper bound on the
optimal value of [P]

Weak Duality Theorem. Let x* be a feasible solution to [P], and let y* be a feasible solution to [D]. Then
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Corollary 1. If x* is a feasible solution to [P], y* is a feasible solution to [D], and
c'x*=b'y"

then (i) x* is an optimal solution to [P] and (ii) y* is an optimal solution to [D].
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Corollary 2. If [P] is unbounded, then [D] must be infeasible.
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Corollary 3. If [D] is unbounded, then [P] must be infeasible.

Proof. Similar to the previous corollary.

e Note that primal infeasibility does not imply dual unboundedness
e It is possible that both primal and dual LPs are infeasible
o See Rader p. 328 for an example

o All these theorems and corollaries apply to arbitrary primal-dual LP pairs, not just [P] and [D] above

3 Strong duality

Strong Duality Theorem. Let [P] denote a primal LP and [D] its dual.

a. If [P] has a finite optimal solution, then [D] also has a finite optimal solution with the same objective
function value.

b. If [P] and [D] both have feasible solutions, then

o [P] has a finite optimal solution x*;
e [D] has a finite optimal solution y*;
o the optimal values of [P] and [D] are equal.

e This is an| AMAZING]fact

o Useful from theoretical, algorithmic, and modeling perspectives

e Even the simplex method implicitly uses duality: the reduced costs are essentially dual solutions that
are infeasible until the last step



