SA305 – Linear Programming Asst. Prof. Nelson Uhan

Lesson 30. Weak and Strong Duality

1 Practice taking duals!

Example 1. State the dual of the following linear programs.

a.	minimize $5x_1 + x_2 - 4x_3$	b. maximize $19y_1 + 4y_2 - 8z_2$
	subject to $x_1 + x_2 + x_3 + x_4 = 19$ y 0	subject to $11y_1 + y_2 + z_1 = 15 \ \chi_1 \ \bigcirc$
	$4x_2 + 8x_4 \le 55$ y_2 B	$z_1 + 5z_2 \leq 0$ \varkappa_{λ} S
	$x_1 + 6x_2 - x_3 \ge 7$ y_3 \leq	$y_1 - y_2 + z_2 \ge 4 \qquad \lambda_3 \underline{B}$
	χ_1 free, $x_2 \ge 0, x_3 \ge 0, x_4 \le 0$	$y_1 \ge 0, y_2 \ge 0, z_1$ free, z_2 free S S O O
	0 S S B	<u> </u>
a. max	19y, + 55y _a + 7y ₃ b.	min $15x_1 + 4x_3$
5,†.	$y_1 + y_3 = 5 \times 0$	s.t. $ x_1 + x_3 \le 9 + y_1 - S$
	$y_1 + 4y_2 + 6y_3 \le x_2 S$	$x_1 - x_3 \leq 0$ $y_2 \leq S$
	0 -	$\chi_1 + \chi_2 = 0 \qquad z_1 \qquad 0$
	$y_1 - y_3 \leq -4 x_3 S$	$5x_2 + x_3 = -8$ z_2 0
	$y_1 + \delta y_2 \ge 0 x_4 B$	χ_1 free, $\chi_2 \ge 0$, $\chi_3 \le 0$ O S B
	y_1 , free, $y_2 \leq 0$, $y_3 \geq 0$	0 3 D
	$\begin{array}{ccc} 0 & B & S \end{array}$	

Spring 2014

2 Weak duality

- Consider the following primal-dual pair of LPs
- Remember we constructed the dual in such a way that the multipliers **y** give us an upper bound on the optimal value of [P]

Weak Duality Theorem. Let \mathbf{x}^* be a feasible solution to [P], and let \mathbf{y}^* be a feasible solution to [D]. Then

 $c^\top x^* \leq b^\top y^*$

Proof.
$$\vec{z}^{T}\vec{x}^{*} \leq (A^{T}\vec{y}^{*})^{T}\vec{x}^{*} = \vec{y}^{*T}A\vec{x}^{*} \leq \vec{y}^{*T}\vec{b}$$
.
 $\vec{x}^{*} \geq 0$
 \vec{y}^{*} feasible in $[D]: A^{T}\vec{y}^{*} \leq \vec{c}$ \vec{x}^{*} feasible in $[P]: A\vec{x}^{*} \leq \vec{b}$

Corollary 1. If \mathbf{x}^* is a feasible solution to [P], \mathbf{y}^* is a feasible solution to [D], and

 $\mathbf{c}^{\top}\mathbf{x}^{*} = \mathbf{b}^{\top}\mathbf{y}^{*}$

then (i) \mathbf{x}^* is an optimal solution to [P] and (ii) \mathbf{y}^* is an optimal solution to [D].

$$\frac{P_{roo}f}{i}$$
(i) $\vec{c}^{T}\vec{x}^{*} = \vec{b}^{T}\vec{y}^{*} \ge \vec{c}^{T}\vec{x}$ for all feasible solutions \vec{x} to $[P]$
Weak duality
(ii) $\vec{b}^{T}\vec{y}^{*} = \vec{c}^{T}\vec{x}^{*} \le \vec{b}^{T}\vec{y}$ for all feasible solutions \vec{y} to $[D]$
Weak duality
Weak duality

Corollary 2. If [P] is unbounded, then [D] must be infeasible.

Proof. By contradiction. Suppose [D] is feasible.
Let
$$\vec{y}^*$$
 be a feasible solution to [D].
Weak duality $\Rightarrow \vec{c}^T \vec{x} \leq \vec{b}^T \vec{y}^*$ for all feasible solutions \vec{x} to [P]
 \Rightarrow [P] cannot be unbounded, which is a contradiction.

Corollary 3. If [D] is unbounded, then [P] must be infeasible.

Proof. Similar to the previous corollary.

- Note that primal infeasibility does not imply dual unboundedness
- It is possible that both primal and dual LPs are infeasible
 - See Rader p. 328 for an example
- All these theorems and corollaries apply to arbitrary primal-dual LP pairs, not just [P] and [D] above

3 Strong duality

Strong Duality Theorem. Let [P] denote a primal LP and [D] its dual.

- a. If [P] has a finite optimal solution, then [D] also has a finite optimal solution with the same objective function value.
- b. If [P] and [D] both have feasible solutions, then
 - [P] has a finite optimal solution **x**^{*};
 - [D] has a finite optimal solution \mathbf{y}^* ;
 - the optimal values of [P] and [D] are equal.
- This is an AMAZING fact
- Useful from theoretical, algorithmic, and modeling perspectives
- Even the simplex method implicitly uses duality: the reduced costs are essentially dual solutions that are infeasible until the last step