Lesson 30. Weak and Strong Duality

1 Practice taking duals!

Example 1. State the dual of the following linear programs.

a. minimize
$$5x_1 + x_2 - 4x_3$$
 b. maximize $19y_1 + 4y_2 - 8z_2$ subject to $x_1 + x_2 + x_3 + x_4 = 19$ subject to $11y_1 + y_2 + z_1 = 15$ $4x_2 + 8x_4 \le 55$ $z_1 + 5z_2 \le 0$ $y_1 - y_2 + z_2 \ge 4$ $x_2 \ge 0, x_3 \ge 0, x_4 \le 0$ $y_1 \ge 0, y_2 \ge 0$

2 Weak duality

• Consider the following primal-dual pair of LPs

[P] maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

[D] minimize
$$\mathbf{b}^{\mathsf{T}}\mathbf{y}$$

subject to $A^{\mathsf{T}}\mathbf{y} \ge \mathbf{c}$
 $\mathbf{y} \ge \mathbf{0}$

• Remember we constructed the dual in such a way that the multipliers **y** give us an upper bound on the optimal value of [P]

Weak Duality Theorem. Let \mathbf{x}^* be a feasible solution to [P], and let \mathbf{y}^* be a feasible solution to [D]. Then

$$c^\top x^* \leq b^\top y^*$$

Corollary 1. If \mathbf{x}^* is a feasible solution to [P], \mathbf{y}^* is a feasible solution to [D], and

$$\mathbf{c}^{\top}\mathbf{x}^{*} = \mathbf{b}^{\top}\mathbf{y}^{*}$$

then (i) \mathbf{x}^* is an optimal solution to [P] and (ii) \mathbf{y}^* is an optimal solution to [D].

rollary 2. If [P] is unbounded, then [D] must be infeasible.	

Corollary 3. If [D] is unbounded, then [P] must be infeasible.

Proof. Similar to the previous corollary.

- Note that primal infeasibility does not imply dual unboundedness
- It is possible that both primal and dual LPs are infeasible
 - o See Rader p. 328 for an example
- All these theorems and corollaries apply to arbitrary primal-dual LP pairs, not just [P] and [D] above

3 Strong duality

Strong Duality Theorem. Let [P] denote a primal LP and [D] its dual.

- a. If [P] has a finite optimal solution, then [D] also has a finite optimal solution with the same objective function value.
- b. If [P] and [D] both have feasible solutions, then
 - [P] has a finite optimal solution **x***;
 - [D] has a finite optimal solution y*;
 - the optimal values of [P] and [D] are equal.
- This is an AMAZING fact
- Useful from theoretical, algorithmic, and modeling perspectives
- Even the simplex method implicitly uses duality: the reduced costs are essentially dual solutions that are infeasible until the last step