Lesson 31. An Economic Interpretation of LP Duality

Today

- An economic interpretation of duality
- Complementary slackness

Review: weak and strong duality

• Weak duality theorem: For any primal-dual pair of LPs,

$$\left(\begin{array}{c} \text{objective function value} \\ \text{of any feasible solution} \\ \text{to the } \underline{\text{maximizing LP}} \end{array}\right) \leq \left(\begin{array}{c} \text{objective function value} \\ \text{of any feasible solution} \\ \text{to the } \underline{\text{minimizing LP}} \end{array}\right)$$

- **Corollary.** If the primal and dual have feasible solutions with the <u>same objective function value</u>, then these solutions must be optimal for the primal and dual, respectively
- Corollary. For any primal-dual pair of LPs, if one of the LPs is unbounded, then the other must be infeasible
 - Note that the reverse doesn't always hold: if one of the LPs is infeasible, the other is not necessarily unbounded

• Strong duality theorem:

- 1. If the primal LP has finite optimal value, then
 - the dual has finite optimal value, and
 - the primal and dual have the same optimal value
- 2. If the primal and dual have feasible solutions, then
 - both LPs have finite optimal values, and
 - the primal and dual have the same optimal value

Warm up

The Fulkerson Furniture Company produces desks, tables, and chairs. Each type of furniture requires a certain amount of lumber, finishing, and carpentry:

Resource	Desk	Table	Chair	Available
Lumber (sq ft)	8	6	2	48
Finishing (hrs)	3	2	1	20
Carpentry (hrs)	2	2	1	8
Profit (\$)	60	30	20	

Assume that all furniture produced is sold, and that fractional solutions are acceptable. Write a linear program to determine how much furniture Fulkerson should produce in order to maximize its profits.

- Decision variables:
- Fulkerson's LP:

Economic interpretation of the dual LP

- Suppose an entrepreneur wants to purchase all of Fulkerson's resources (lumber, finishing, carpentry)
- What prices should she offer for the resources that will entice Fulkerson to sell?
- Define decision variables:

 y_1 = price of 1 sq. ft. lumber y_2 = price of 1 hour of finishing y_3 = price of 1 hour of carpentry

- To buy all of Fulkerson's resources, entrepreneur pays:
- Entrepreneur wants to minimize costs
- Entrepreneur needs to offer resource prices that will entice Fulkerson to sell

• One desk uses
- 8 sq. ft. of lumber
- 3 hours of finishing
- 2 hours of carpentry
- One desk has profit of \$60
⇒ Entrepreneur should pay at least \$60 for this combination of resources:
• One table uses
- 6 sq. ft. of lumber
- 2 hours of finishing
- 2 hours of carpentry
- One table has profit of \$30
⇒ Entrepreneur should pay at least \$30 for this combination of resources:
• One chair uses
- 2 sq. ft. of lumber
- 1 hours of finishing
- 1 hours of carpentry
- One chair has profit of \$20
⇒ Entrepreneur should pay at least \$20 for this combination of resources:

• Increasing the availability of the resources potentially increases the maximum profits Fulkerson can

⇒ Entrepreneur should pay nonnegative amounts for each resource:

achieve

• Putting this all together, we get:

- This is the dual of Fulkerson's LP!
- In summary:
 - Optimal dual solution ⇔ "fair" prices for associated resources
 - Known as marginal prices or shadow prices
- Strong duality
 - ⇒ Company's maximum revenue from selling furniture = Entrepreneur's minimum cost of purchasing resources
 - Equilibrium under perfect competition: company makes no excess profits
- This kind of economic interpretation is trickier for LPs with different types of constraints and variable bounds

Complementary slackness

- Optimal solution to Fulkerson's LP: $x_1 = 4$, $x_2 = 0$, $x_3 = 0$
- Resources used:

lumber:
$$32 < 48$$
 finishing: $12 < 20$ carpentry: $8 = 8$

- How much would you pay for an extra sq. ft. of lumber?
- How much would you pay for an extra hour of finishing?
- Resource not fully utilized in optimal solution
 - \Rightarrow marginal price = 0
- Primal complementary slackness: either
 - a primal constraint is active at a primal optimal solution, or
 - the corresponding dual variable at optimality = 0
- Same logic applies to the dual

- Dual constraints ⇔ Primal decision variables
- Dual complementary slackness: either
 - a primal decision variable at optimality = 0, or
 - the corresponding dual constraint is active in a dual optimal solution

If we have time...

Consider the following LP:

minimize
$$3x_1 - x_2 + 8x_3$$

subject to $-x_1 + 8x_3 \le 6$
 $5x_1 - 3x_2 + 9x_3 \ge -2$
 $x_1 \ge 0, x_2 \le 0, x_3 \ge 0$

- 1. Write the dual.
- 2. Find a feasible solution to the primal and the dual.
- 3. Give a lower and an upper bound on the optimal value of the above LP.