Syllabus

Last updated: January 6, 2014

Course description Operations research (OR) is a broad field which, loosely speaking, investigates how mathematical techniques can be used to solve "real-life" decision-making problems. This course provides an introduction to linear programming, a fundamental technique used in OR. In particular, the course focuses on formulating mathematical optimization models (also called *mathematical programs*), and understanding the mathematical underpinnings of linear programming algorithms.

Textbook D. Rader, Deterministic Operations Research: Models and Methods in Linear Optimization, Wiley, 2010.

Schedule This schedule is subject to change.

Unit	Date	Topic	Reading
Overview	1/7	Introduction to operations research	1.1
	1/8	Introduction to optimization modeling, classification of optimization models	1.2, 1.3
	1/10	Graphical solution of optimization models, sensitivity analysis	1.2
Modeling	1/13	Resource allocation models, introduction to GMPL and GUSEK	2.1
	1/15	Work scheduling models	2.2
	1/17	Blending models	2.4
	1/20	Holiday – Martin Luther King Jr. Day	
	1/22	Production process models	2.5
	1/24	Production process models, cont.	2.5
	1/27	Multiperiod models	2.6
	1/29	Sets, summations, for statements	2.3
	1/31	Resource allocation models, revisited	2.1
	2/3	Work scheduling models, revisited	2.2
	2/5	Blending models, revisited	2.4
	2/7	Production process models, revisited	2.5
	2/10	Multiperiod models, revisited	2.6
	2/12	Review	
	2/14	Exam 1	

Unit	Date	Topic	Reading
Algorithms	2/17 2/19 2/21	Holiday – Washington's Birthday Introduction to algorithm design Improving search: finding better solutions	5.1–5.2 6.1–6.2
	2/24 2/26 2/28	Improving search: convexity and optimality Improving search: review Geometry and algebra of corner points	6.3 6.1–6.3 7.1
	3/3 3/5 3/7	Geometry and algebra of corner points, cont., fundamental theorem of LP Linear programs in canonical form Basic solutions in canonical form LPs	7.1–7.2 2.8, 7.3 7.3
	3/10 - 3/14	Spring Break	
	3/17 3/19 3/21	The simplex method The simplex method, cont. The simplex method: review	8.1 8.1 8.1
Duality	3/24 3/26 3/28	Degeneracy, convergence, multiple optimal solutions The two-phase simplex method Bounds and the dual LP	8.3 8.4 9.1, 9.2
	3/31 4/2 4/4	Weak and strong duality, complementary slackness Review Exam 2	9.3
	4/7 4/9 4/11	Duality review, maximin objectives Maximin and minimax objectives LP duality and game theory	9.1–9.3, 2.7 2.7 handout
Modeling revisited	4/14 4/16 4/18	An economic interpretation of LP duality Introduction to networks and the shortest path problem Modeling with the shortest path problem	9.6 2.9 2.9
	4/21 4/23 4/25 4/28	Modeling with the shortest path problem, cont. Review Review Review	2.9
	4/20	ICVICW	