Lesson 10. Sets, Summations, For Statements

1 Sets

•	A set is a	collections	of elements/	objects, e.g.
---	------------	-------------	--------------	---------------

$$S = \{1, 2, 3, 4, 5\}$$
 Fruits = {Apple, Orange, Pear} (1)

• "in" symbol:

$$i \in N \iff$$
 "element *i* is in the set *N*"

• For example:

2 Summations

• Summation symbol over sets:

$$\sum_{i \in N} \quad \Leftrightarrow \quad \text{"sum over all elements of } N \text{"}$$

• For example:

• Common shorthand: if $N = \{1, 2, ..., n\}$, then

$$\sum_{i \in N} \text{ is the same as } \sum_{i \in \{1,2,\dots,n\}} \text{ as well as } \sum_{i=1}^{n}$$

Problem 1. Let the sets *S* and Fruits be defined as above in (1). Write each of the following as compactly as possible using summation notation:

a. $x_{\text{Apple}} + x_{\text{Orange}} + x_{\text{Pear}}$

b.
$$1y_1 + 2y_2 + 3y_3 + 4y_4 + 5y_5$$

3	For statements					
	• "for" statements over sets:					
	for $i \in N \iff$ "repeat for each element of N "					
	For example:					
	$c_j x_1 + d_j x_2 \le b_j$ for $j \in \text{Fruits} \iff$					
	• Common shorthand: if $N = \{1, 2,, n\}$, then					
	"for $i \in N$ " is the same as "for $i \in \{1, 2,, n\}$ " as well as "for $i = 1, 2,, n$ "					
	• Sometimes we say "for all $i \in N$ " instead of "for $i \in N$ "					
	·					
4	Multiple indices					
	• Sometimes it may be useful to use decision variables with <u>multiple</u> indices					
	• Example:					
	• Set of hat types: $H = \{A, B, C\}$					
	• Set of factories: $F = \{1, 2\}$					
	Each hat type can be be produced at each factory					
	Define decision variables:					
	$x_{i,j}$ = number of type i hats produced at factory j for $i \in H$ and $j \in F$ (2)					
	 What decision variables have we just defined? How many are there? 					
Pr	oblem 2. Using the decision variables defined in (2), write expressions for					
	a. Total number of type C hats produced					
	b. Total number of hats produced at facility 2					
Us	e summation notation if possible.					

• Suppos	e
----------	---

 $c_{i,j}$ = cost of producing one type i hat at factory j for $i \in H$ and $j \in F$

• If we produce $x_{i,j}$ hats of type i at factory j (for $i \in H$ and $j \in F$), then the total cost is

Problem 3. Let $M = \{1, 2, 3\}$ and $N = \{1, 2, 3, 4\}$. Write the following as compactly as possible using summation notation and "for" statements.

Let y_1 = amount of product 1 produced

 y_2 = amount of product 2 produced

 y_3 = amount of product 3 produced

 y_4 = amount of product 4 produced

$$a_{1,1}y_1 + a_{1,2}y_2 + a_{1,3}y_3 + a_{1,4}y_4 = b_1$$

$$a_{2,1}y_1 + a_{2,2}y_2 + a_{2,3}y_3 + a_{2,4}y_4 = b_2$$

$$a_{3,1}y_1 + a_{3,2}y_2 + a_{3,3}y_3 + a_{3,4}y_4 = b_3$$