Lesson 14. Production Process Models, Revisited

Example 1. Yobro Co. produces three types of high-end organic, bio-diverse, fair-trade, non-harmful-to-animals household cleaners: standard, pine, and lemon. Each gallon of raw soap produces a_s gallons of standard, a_p gallons of pine, and a_ℓ gallons of lemon. Each gallon of standard can be converted directly into b_{sp} gallons of pine at a cost of c_{sp} per gallon. Separately, each gallon of standard can also be converted into $b_{s\ell}$ gallons of lemon at a cost of $c_{s\ell}$ per gallon. Raw soap costs c_r per gallon. Standard, pine, and lemon sell for v_s , v_p , and v_ℓ per gallon, respectively. Suppose that Yobro wants to satisfy demand for d_s gallons of standard, d_p of pine, and d_ℓ gallons of lemon.

- a. Write a linear program that determines the number of gallons of each type of cleaner Yobro should make in order to maximize profit. Make sure to
 - define the input parameters,
 - define the decision variables, and
 - briefly explain the objective function and constraints that you write.

Input parameters:

$$a_i = gal. \text{ of cleaner i from 1 gal. raw 50ap for } i\in\{s,p,l\}$$
 $b_{si} = gal. \text{ of cleaner i from 1 gal. standard } \text{ for } i\in\{p,l\}$
 $C_r = cost \text{ of 1 gal. raw 50ap}$
 $C_{si} = cost \text{ of 1 gal. standard} \rightarrow cleaner i \text{ for } i\in\{p,l\}$
 $V_i = revenue \text{ of 1 gal. cleaner i for } i\in\{s,p,l\}$
 $d_i = demand \text{ for cleaner i for } i\in\{s,p,l\}$
 $X_r = gal. \text{ raw 50ap purchased}$
 $X_{si} = gal. \text{ standard} \rightarrow cleaner i \text{ for } i\in\{p,l\}$
 $Y_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$
 $S_i = gal. \text{ cleaner i 50ld for } i\in\{s,p,l\}$

b. YoBro just tweeted that they have created an additional process that converts standard to pine and lemon simultaneously. With this process, each gallon of standard converts to f_{sp} gallons of pine and $f_{s\ell}$ gallons of lemon at a cost of $c_{sp\ell}$ per gallon. How do you change the linear program you just wrote to account for this new process?

Add input parameters: $f_{si} = gal.$ cleaner i from standard using simultaneous process for ie $\{p,l\}$ Cspl = cost of 1 gal. standard \rightarrow pine + lemon simultaneously

Add DV: Xspl = gal. standard \rightarrow pine + lemon simultaneously

Add to objective function: -Cspl. Xspl.Change constraints: $a_s x_r = x_{sp} + x_{sl} + y_s + x_{spl}$ $f_{si} x_{spl} + a_i x_r + b_{si} x_{si} = y_p$ for $i \in \{p,l\}$ $y_i \ge 0$ for $i \in \{s,p,l\}$ $x_r \ge 0$ $x_{spl} \ge 0$