Lesson 17. Improving Search: Finding Better Solutions

1 A general optimization model

- For the next few lessons, we will consider a general optimization model
- Decision variables: x_1, \ldots, x_n
 - \circ Recall: a feasible solution to an optimization model is a choice of values for <u>all</u> decision variables that satisfies all constraints
- Easier to refer to a feasible solution as a vector: $\mathbf{x} = (x_1, \dots, x_n)$
- Let $f(\mathbf{x})$ and $g_i(\mathbf{x})$ for $i \in \{1, ..., m\}$ be multivariable functions in \mathbf{x} , not necessarily linear
- Let b_i for $i \in \{1, ..., m\}$ be constant scalars

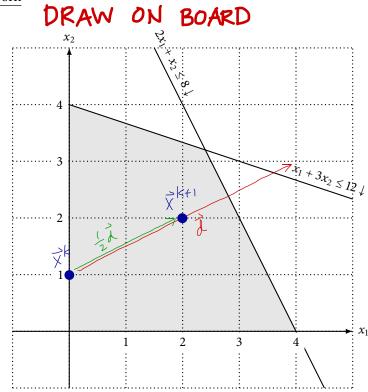
minimize/maximize
$$f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \begin{cases} \leq \\ \geq \\ = \end{cases} b_i$ for $i \in \{1, ..., m\}$ (*)

• Linear programs fit into this framework

Example 1.

 $\vec{\chi} = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$

maximize
$$\underbrace{4x_1 + 2x_2}_{f(\vec{x})}$$
 subject to $\underbrace{(x_1 + 3x_2)}_{g_1(\vec{x})} \le \underbrace{(12)}_{b_1} (1)$ $\underbrace{(1)}_{g_2(\vec{x})} \underbrace{(2x_1 + x_2)}_{b_3} \le \underbrace{(8)}_{b_2} (2)$ $\underbrace{(2)}_{g_3(\vec{x})} \underbrace{(x_1) \ge 0}_{b_3} = \underbrace{(3)}_{a_1(\vec{x})} \underbrace{(x_2) \ge 0}_{b_4} = \underbrace{(4)}_{a_1(\vec{x})}$



2 Improving search algorithms, informally

- Idea:
 - Start at a feasible solution
 - o Repeatedly move to a "close" feasible solution with better objective function value
- The **neighborhood** of a feasible solution is the set of all feasible solutions "close" to it
 - o We can define "close" in various ways to design different types of algorithms
- Let's start formalizing these ideas

3 Locally and globally optimal solutions

• ε -neighborhood $N_{\varepsilon}(\mathbf{x})$ of a solution $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ (where $\varepsilon > 0$):

$$N_{\varepsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{y}) \leq \varepsilon\}$$

where $d(\mathbf{x}, \mathbf{y})$ is the distance between solution \mathbf{x} and \mathbf{y}

• A feasible solution **x** to optimization model (*) is **locally optimal** if for some value of $\varepsilon > 0$:

$$f(\mathbf{x})$$
 is better than $f(\mathbf{y})$ for all feasible solutions $\mathbf{y} \in N_{\varepsilon}(\mathbf{x})$

• A feasible solution **x** to optimization model (*) is **globally optimal** if:

$$f(\mathbf{x})$$
 is better than $f(\mathbf{y})$ for all feasible solutions \mathbf{y}

- Also known simply as an **optimal solution**
- Global optimal solutions are locally optimal, but not vice versa
- In general: harder to check for global optimality, easier to check for local optimality

4 The improving search algorithm

- 1 Find an initial feasible solution \mathbf{x}^0
- 2 Set k = 0
- 3 **while** \mathbf{x}^k is not locally optimal **do**
- Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^k
- 5 Set k = k + 1
- 6 end while
- Generates sequence of feasible solutions $\mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots$
- In general, improving search converges to a local optimal solution, not a global optimal solution
- Let's concentrate on line 4 finding better feasible solutions

5 Moving between solutions

• How do we move from one solution to the next?

next solution
$$\longrightarrow \mathbf{x}^{k+1} = \mathbf{x}^k + \lambda \mathbf{d} \leftarrow$$
 direction

Current step
Solution size

• In Example 1:

Let:
$$\vec{X}^k = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 $\vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $\lambda = \frac{1}{2}$

$$\Rightarrow \vec{X}^{k+1} = \vec{X}^k + \lambda \vec{d} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

6 Improving directions

- We want to choose **d** so that \mathbf{x}^{k+1} has a better value than \mathbf{x}^k
- **d** is an **improving direction** at solution \mathbf{x}^k if

$$f(\mathbf{x}^k + \lambda \mathbf{d})$$
 is better than $f(\mathbf{x}^k)$ for all positive λ "close" to 0

- How do we find an improving direction? at solution \vec{x}^k
- The **directional derivative** of f in the direction \mathbf{d} is

$$\frac{\nabla f(\vec{x}^k)^T \vec{d}}{\|\vec{d}\|} = \text{rate of change in } f \text{ in the direction } \vec{d} \text{ at solution } \vec{x}^k$$

- Maximizing $f: \mathbf{d}$ is an improving direction at \mathbf{x}^k if $\nabla f(\vec{\mathbf{x}}^k)^\top \vec{\mathbf{d}} > 0$
- Minimizing f: **d** is an improving direction at \mathbf{x}^k if $\nabla f(\mathbf{x}^k)^\top \vec{J} < 0$
- In Example 1:

Is
$$\vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 an improving direction at $\vec{x}^k = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$?

$$f(\vec{x}) = 4x_1 + 2x_2 \implies \nabla f(\vec{x}) = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \leftarrow \nabla f(\vec{x}) \text{ is the same for any } \vec{x}$$

$$\nabla f(\vec{x}^k)^T \vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}^T \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 16 + 4 = 20 > 0$$

$$\implies \underbrace{Tes}_{,} \vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \text{ is improving at } \vec{x}^k = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

• For linear programs in general: if **d** is an improving direction at \mathbf{x}^k , then $f(\mathbf{x}^k + \lambda \mathbf{d})$ improves as $\lambda \to \infty$

3

7 Step size

- We have an improving direction **d** now how far do we go?
- One idea: find maximum value of λ so that $\mathbf{x}^k + \lambda \mathbf{d}$ is still feasible
- Graphically, we can eyeball this
- Algebraically, we can compute this in Example 1:

For what values of
$$\lambda$$
 is $\vec{x}^k + \lambda \vec{d} = \begin{pmatrix} 4\lambda \\ 1+2\lambda \end{pmatrix}$ still feasible?
(1) $x_1 + 3x_2 \le 12$ (2) $2x_1 + x_2 \le 8$ (3) $x_1 \ge 0$
 $\Rightarrow 4\lambda + 3(1+2\lambda) \le 12$ $\Rightarrow 2(4\lambda) + (1+2\lambda) \le 8$ $\Rightarrow 4\lambda \ge 0$
 $\Rightarrow 10\lambda \le 9$ $\Rightarrow 10\lambda \le 7$ $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 9$ $\Rightarrow 10\lambda \le 7$ $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$ $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$ $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \le 7$
 $\Rightarrow 10\lambda \ge 7$

8 Feasible directions

- Some improving directions don't lead to any new feasible solutions
- **d** is a **feasible direction** at feasible solution \mathbf{x}^k if $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all positive λ "close" to 0
- Again, graphically, we can eyeball this
- A constraint is **active** at feasible solution **x** if it is satisfied with equality
- For linear programs:
 - We have constraints of the form:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \le b$$

 $a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b$
 $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$

• We can rewrite these constraints using vector notation:

Let
$$\vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
 $\vec{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ \Rightarrow $\vec{a} \cdot \vec{X} \leq \vec{b}$ $\vec{a} \cdot \vec{X} \leq \vec{b}$ $\vec{a} \cdot \vec{X} \leq \vec{b}$ $\vec{a} \cdot \vec{X} \leq \vec{b}$

- \circ **d** is a feasible direction at **x** if
 - $\diamond \mathbf{a}^{\mathsf{T}} \mathbf{d} \leq 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}} \mathbf{x} \leq b$
 - $\diamond \mathbf{a}^{\mathsf{T}} \mathbf{d} \ge 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}} \mathbf{x} \ge b$
 - $\mathbf{a}^{\mathsf{T}}\mathbf{d} = 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} = b$

• In Example 1:

Is
$$\vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 a feasible direction at $\vec{x}^k = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$?

Active constraints at \vec{x}^k : $x_1 \ge 0$
 \Rightarrow We need to check if $d_1 \ge 0$ - $\frac{1}{2}$ Yes!

 $\vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ is a feasible direction at $\vec{x}^k = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

9 Detecting unboundedness

- Suppose **d** is an improving direction at feasible solution \mathbf{x}^k to a linear program
- Also, suppose $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all $\lambda \ge 0$
- What can you conclude?

LP is unbounded:
$$f(\vec{x}^k + \lambda \vec{d}) \text{ improves and } \vec{x}^k + \lambda \vec{d} \text{ remains feasible as } \lambda \to \infty.$$

10 Summary

- Line 4 boils down to finding an improving and feasible direction **d** and an accompanying step size λ
- We discussed conditions on whether a direction is improving and feasible
- We don't know how to systematically find such directions... yet