Lesson 24. Finding an Initial BFS

1 Overview

- Today: How do we find an initial BFS to start the simplex method?
- The Phase I LP: an auxiliary LP based on the original canonical form LP with an easy-to-find initial BFS
 - Solve the Phase I LP using the simplex method
 - o The optimal solution to the Phase I LP will either
 - ⋄ give an initial BFS for the original LP
 - ⋄ prove that the original LP is infeasible

2 Constructing the Phase I LP

- 1. If necessary, multiply the equality constraints by -1 so that the RHS is nonnegative
- 2. Add a nonnegative **artificial variable** to the LHS of each constraint (each constraint gets its own artificial variable)
- 3. The objective is to minimize the sum of the artificial variables
- 4. Compute the initial BFS for the Phase I LP by putting all artificial variables in the basis

Example 1. Construct the Phase I LP from the following canonical form LP.

maximize
$$4x_1 + 5x_2 - 9x_3$$

subject to $8x_1 - x_2 + x_3 = 4$
 $x_1 + 4x_2 - 7x_3 = -22$
 $x_1, x_2, x_3 \ge 0$ (*)

What is the initial BFS of the Phase I LP?

3 How does the Phase I LP work?						
	• L	Let's consider the Phase I LP we wrote in Example 1				
 The Phase I LP can't be unbounded, because It can't be infeasible either (we can always compute an initial BFS!) Therefore, the Phase I LP must have an optimal solution Let (x₁[*], x₂[*], x₃[*], a₁[*], a₂[*]) be an optimal BFS to the Phase I LP 						
	• C	Case 1. The optimal value of the Phase I LP is strictly greater than 0: $a_1^* + a_2^* > 0$				
• Case 2. The optimal value of the Phase I LP is equal to 0: $a_1^* + a_2^* = 0$						
	• TI	nis reasoning applies in general				
4	Putt	ing it all together: The Two-P	has	se Simplex Method		
Sto	_	Phase I. Construct Phase I LP slve the Phase I LP.	and	d compute its easy-to-find initia	1 BI	FS. Use the simplex method to
Sto	ep 2:]	Infeasibility. If the optimal val	ue	of the Phase I LP is		
		• > 0 \Rightarrow stop; original LF • = 0 \Rightarrow identify initial B				
Sto	ep 3: 1	Phase II. Use the simplex meth	nod	to solve the original LP, using the	he i	nitial BFS identified in Step 2.
5	Poss	sible outcomes of LPs				
	When do we detect if an LP:					
	Г	is infeasible?	1	is unbounded?	1	has an optimal solution?