SA305 – Linear Programming Spring 2015 Asst. Prof. Nelson Uhan

Lesson 27. Weak and Strong Duality

1 Practice taking duals!

Example 1. State the dual of the following linear program.

maximize $5x_1 + x_2 - 4x_3$ subject to $x_1 + x_2 + x_3 + x_4 = 19$ $4x_2 + 8x_4 \leq 55$ $x_1 + 6x_2 - x_3 \ge 7$ x_1 free, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \le 0$

2 Weak duality

- Let [max] and [min] be a primal-dual pair of LPs
	- [max] is the maximization LP
	- [min] is the minimization LP
	- \circ [min] is the dual of [max], and [max] is the dual of [min]
- Let z^* be the optimal value of [max]
- In the previous lesson, we saw that
	- \circ Any feasible solution to [max] gives a lower bound on z^*
	- \circ Any feasible solution to [min] gives an upper bound on z^*
- Putting these observations together:

Weak Duality Theorem.

(Objective function value of any feasible solution to $[\text{max}]$) \leq (of any feasible solution to $[\text{min}]$)

1

• The weak duality theorem has several interesting consequences

Corollary 1. If x^* is a feasible solution to $[\text{max}]$, y^* is a feasible solution to $[\text{min}]$, and

$$
\left(\begin{array}{c}\n\text{Objective function value} \\
\text{of } x^* \text{ in } [\text{max}]\n\end{array}\right) = \left(\begin{array}{c}\n\text{Objective function value} \\
\text{of } y^* \text{ in } [\text{min}]\n\end{array}\right)
$$

then (i) \mathbf{x}^* is an optimal solution to [max], and (ii) \mathbf{y}^* is an optimal solution to [min].

● Why is this corollary true? Let's start with (i):

$$
\left(\begin{array}{c} \text{Objective function value} \\ \text{of } x^* \text{ in } [\text{max}] \end{array}\right) = \left(\begin{array}{c} \text{Objective function value} \\ \text{of } y^* \text{ in } [\text{min}] \end{array}\right) \ge \left(\begin{array}{c} \text{Objective function value} \\ \text{of } \text{any feasible solution to } [\text{max}] \end{array}\right)
$$

- Therefore x^* must be an optimal solution to [max]
- (ii) can be argued similarly

Corollary 2. (i) If [max] is unbounded, then [min] must be infeasible. (ii) If [min] is unbounded, then [max] must be infeasible.

- Why is this corollary true? Let's start with (i)
- Proof by contradiction: suppose [min] is feasible, and let **y** ∗ be a feasible solution to [min]

$$
\left(\begin{array}{c} \text{Objective function value} \\ \text{of } y^* \text{ in } [\text{min}] \end{array}\right) \ge \left(\begin{array}{c} \text{Objective function value} \\ \text{of any feasible solution to } [\text{max}] \end{array}\right)
$$

- Therefore [max] cannot be unbounded, which is a contradiction
- (ii) can be argued similarly
- Note that primal infeasibility does not imply dual unboundedness
- It is possible that both primal and dual LPs are infeasible
	- See Rader p. 328 for an example

3 Strong duality

Strong Duality Theorem. Let [P] denote a primal LP and [D] its dual.

- a. If $[P]$ has a finite optimal solution, then $[D]$ also has a finite optimal solution with the same objective function value.
- b. If [P] and [D] both have feasible solutions, then
	- [P] has a finite optimal solution **x**^{*};
	- [D] has a finite optimal solution **y**^{*};
	- \bullet the optimal values of [P] and [D] are equal.
- This is an AMAZING fact
- Useful from theoretical, algorithmic, and modeling perspectives
- Even the simplex method implicitly uses duality: the reduced costs are essentially solutions to the dual that are infeasible until the last step