Lesson 29. Maximin and Minimax Objectives

1 e minimum of a collection of functions

Example 1. Santa Claus is trying to decide how to give candy canes to three children: Ann, Bob, and Carol. Because Santa is a very busy person, he has decided to give the same number of candy canes to each child. Let x be the number of candy canes each child receives. Also, because Santa knows everything, he knows the happiness level of each child as a function of the number of candy canes he or she receives:

> Ann: $1 + 2x$ Bob: $2 + x$ Carol: $5 - \frac{1}{2}$ $\frac{1}{2}x$

Due to the struggling economy, Santa's budget limits him to give each child at most 6 candy canes. To be fair to all 3 children, he has decided that he wants to **maximize the minimum happiness level of all 3 children**. In other words, he is trying to maximize the worst-case happiness level.

Let $f(x)$ be the minimum happiness level of all 3 children when each child receives x candy canes:

What is $f(0)$? $f(1)$? $f(2)$?

Graph $f(x)$:

Santa's optimization problem is:

By looking at the graph of $f(x)$, give an optimal solution to Santa's optimization problem. What are Ann's, Bob's, and Carol's happiness levels at this solution?

Observation. The minimum of a collection of numbers is the largest value that is less than or equal to each number in the collection.

For example, consider min $\{3, 8, -2, 6, 9\}.$

Using this observation, we can rewrite Santa's optimization problem as:

This looks familiar...

What if we maximized the sum of the happiness factors of all 3 children? What is the optimal solution? What is Ann's, Bob's, and Carol's happiness levels at this solution?

⇒ Maximizing the minimum results in more uniform performance than maximizing the sum

2 Maximin objective functions

- Define:
	- \circ decision variables x_j for $j \in \{1, ..., n\}$
	- \circ constants a_{ij} for $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$
	- \circ constants b_i for $i \in \{1, ..., m\}$
- Consider a **maximin objective function**:

maximize
$$
\min \left\{ \sum_{j=1}^{n} a_{1j} x_j + b_1, \sum_{j=1}^{n} a_{2j} x_j + b_2, \dots, \sum_{j=1}^{n} a_{mj} x_j + b_m \right\}
$$

- We can convert a maximin objective function into a linear objective function and linear constraints:
	- \circ Add auxiliary decision variable z
	- Change objective:

$$
maximize z
$$

○ Add constraints:

$$
z \leq \sum_{j=1}^n a_{ij}x_j + b_i \qquad \text{for } i \in \{1, \ldots, m\}
$$

● Main idea: the minimum of a collection of numbers is the largest value that is less than or equal to each number in the collection.

3 Minimax objective functions

● We can similarly convert a **minimax objective function**

minimize
$$
\max \left\{ \sum_{j=1}^{n} a_{1j}x_j + b_1, \sum_{j=1}^{n} a_{2j}x_j + b_2, \dots, \sum_{j=1}^{n} a_{mj}x_j + b_m \right\}
$$

into a linear objective function and constraints:

- \circ Add auxiliary decision variable z
- Change objective:

minimize z

○ Add constraints:

$$
z \geq \sum_{j=1}^{n} a_{ij}x_j + b_i \qquad \text{for } i \in \{1, \dots, m\}
$$

● Similar idea: the maximum of a collection of numbers is the smallest value that is greater than or equal to each number in the collection.

Example 2. The State of Simplex wants to divide the effort of its on-duty officers among 8 highway segments to reduce speeding incidents. You, the analyst, were able to estimate that for each highway segment $j \in \{1, \ldots, 8\}$, the weekly reduction in speeding incidents is $r_j + s_j x_j$, where x_j is the number of officers assigned to segment j. Due to local ordinances, there is an upper bound u_j on the number of officers assigned to highway segment j per week, for $j \in \{1, \ldots, 8\}$. There are 25 officers per week to allocate.

The State of Simplex has decided that it wants to maximize the worst-case reduction in speeding incidents among all highway segments. Write a linear program that allocates officers to highway segments according to this objective.

Input parameters.

- $H =$ set of highway segments = { $1, \ldots, 8$ }
- r_j , s_j = coefficients on weekly incident reduction function for highway segment j for $j \in H$
	- u_i = upper bound on number of officers assigned to highway segment j per week for $j \in H$
	- $N =$ number of officers per week to allocate = 25