Lesson 30. LP Duality and Game Theory

This lesson...

• LP duality and two-player zero-sum game theory

Game theory

- Game theory is the mathematical study of strategic interactions, in which an individual's success depends on his/her own choice as well as the choices of others
- We'll look at one type of game, and use LP duality to give us some insight about behavior in these games

Two-player zero-sum games

- Two players make decisions simultaneously
- Payoff depends on joint decisions
- Zero-sum: whatever one person wins, the other person loses
- Examples:
 - Rock-paper-scissors
 - Advertisers competing for market share (gains/losses over existing market share)

Payoff matrices

- 2 players
 - player R (for "row")
 - player C (for "column")
- Player R chooses among *m* rows (actions)
- Player C chooses among *n* columns
- Example: rock-paper-scissors, m = 3, n = 3

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

- This is the **payoff matrix** for player R
- Zero-sum: Player C receives the negative

• Another example: m = 2, n = 3

	1	2	3
1	-2	1	2
2	2	-1	0

- Player R chooses row 2, Player C chooses column 1
- What is the payoff of each player?

Pure and mixed strategies

- Pure strategy: pick one row (or column) over and over again
- Mixed strategy: each player assigns probabilities to each of his/her strategies
- For example:

	1	2	3
1	-2	1	2
2	2	-1	0
3	1	0	-2

- Suppose player R plays all three actions with equal probability
 - Row 1 with probability 1/3
 - Row 2 with probability 1/3
 - Row 3 with probability 1/3
- For example:

	1	2	3	Prob.
1	-2	1	2	1/3
2	2	-1	0	1/3
3	1	0	-2	1/3
Expected payoffs				

- Suppose player R plays all three actions with equal probability
- \Rightarrow Can compute **expected payoffs**:
 - If player C plays
 - * column 1:
 - * column 2:
 - * column 3:

Who has the advantage?

- Can we find "optimal" (mixed) strategies for two-player zero-sum games?
- What can player R guarantee in return, regardless of what C chooses?

Player R and payoff lower bounds

- Suppose Player R plays all three actions with equal probability
- With this mixed strategy, R can guarantee a payoff of at least:
- This is a lower bound on the payoff R gets when playing (1/3, 1/3, 1/3)

Player C and payoff upper bounds

	1	2	3	Expected payoff (for R)
1	-2	1	2	
2	2	-1	0	
3	1	0	-2	
Prob.	1/3	1/3	1/3	

- Player C's payoff = -(Player R's payoff)
- Player C wants to limit Player R's payoff
- Suppose Player C plays all three actions with equal probability
- With this mixed strategy, C can guarantee that R gets a payoff of at most:
- This is an upper bound on the payoff R gets when C plays (1/3, 1/3, 1/3)

Let's optimize: Player R's problem

- Want to decide mixed strategy that maximizes guaranteed payoff
- \Rightarrow Decision variables:

$$x_i$$
 = prob. of choosing action i for $i \in \{1, 2, 3\}$

	1	2	3	Prob
1	-2	1	2	x_1
2	2	-1	0	<i>x</i> ₂
3	1	0	-2	<i>x</i> ₃

• Optimization model:

- Player R's problem: maximin
- Convert Player R's problem to LP:

Player C's problem

- Want to decide mixed strategy that limits Player R's payoff
- \Rightarrow Decision variables:

 y_i = prob. of choosing action i for $i \in \{1, 2, 3\}$

	1	2	3
1	-2	1	2
2	2	-1	0
3	1	0	-2
Prob.	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3

• Optimization model:

- Player C's problem: minimax
- Convert Player C's problem to LP:

Optimal mixed strategy for Player R

	1	2	3	Prob.
1	-2	1	2	7/18
2	2	-1	0	5/18
3	1	0	-2	1/3
Expected payoff	1/9	1/9	1/9	

- Solve Player R's LP
- \Rightarrow Optimal mixed strategy for R guarantees that R can get at least:
- "Maximin" payoff = 1/9

Optimal mixed strategy for Player C

	1	2	3	Expected payoff (for R)
1	-2	1	2	1/9
2	2	-1	0	1/9
3	1	0	-2	1/9
Prob.	1/3	5/9	1/9	

• Solve Player C's LP

 \Rightarrow Optimal mixed strategy for C guarantees that C can limit R's payoff to at most:

- "Minimax" payoff = 1/9
- "Maximin" payoff = "Minimax" payoff **not** a coincidence

Fundamental Theorem of 2-Player Zero-Sum Games

- $A = m \times n$ payoff matrix for a 2-player zero-sum game
 - a_{ij} = entries of A
- z_R^* = optimal value to Player R's problem (maximin payoff)
- z_C^* = optimal value to Player C's problem (minimax payoff)

$$z_R^* = \max \min\left\{\sum_{i=1}^m a_{i1}x_i, \dots, \sum_{i=1}^m a_{in}x_i\right\}$$

s.t.
$$\sum_{i=1}^m x_i = 1$$
$$x_i \ge 0 \quad \text{for } i \in \{1, \dots, m\}$$

$$z_C^* = \min \max\left\{\sum_{j=1}^n a_{1j}y_j, \dots, \sum_{j=1}^n a_{nj}y_j\right\}$$

s.t.
$$\sum_{j=1}^n y_j = 1$$
$$y_j \ge 0 \quad \text{for } j \in \{1, \dots, n\}$$

- Then, $z_R^* = z_C^*$
 - i.e. maximin payoff = minimax payoff
- Why is this remarkable?
 - Think back to example
 - Imagine you are Player R, and you have to announce in advance what your mixed strategy is
 - Intuitively, this seems like a bad idea
 - But, if you play the optimal maximin strategy, you are guaranteed an expected payoff of 1/9
 - And, Player C cannot do anything to prevent this
 - Announcing the strategy beforehand does not cost you in this case
- Why is this true?
 - Player R's LP and Player C's LP form a primal-dual pair
 - Theorem follows immediately from strong duality for LP
 - For example, after some manipulation, it is easy to see that in our game, Player R's LP and Player C's LP are duals of each other

Player R's LP:

Player C's LP:

min w
s.t.
$$2y_1 - y_2 - 2y_3 + w \ge 0$$

$$-2y_1 + y_2 + w \ge 0$$

$$-y_1 + 2y_3 + w \ge 0$$

$$y_1 + y_2 + y_3 = 1$$

$$y_1, y_2, y_3 \ge 0$$