Syllabus

Last updated: 5 January 2015

Course description Operations research (OR) is a broad field which, loosely speaking, investigates how mathematical techniques can be used to solve "real-life" decision-making problems. This course provides an introduction to linear programming, a fundamental technique used in OR. In particular, the course focuses on formulating mathematical optimization models (also called *mathematical programs*), and understanding the mathematical underpinnings of linear programming algorithms.

Textbook D. Rader, Deterministic Operations Research: Models and Methods in Linear Optimization, Wiley, 2010.

Schedule This schedule is subject to change.

Unit	Week	Topic	Readings
Overview	1	Introduction to operations research	1.1
	7 Jan – 9 Jan	Introduction to optimization modeling	1.2
	2	Graphical solution of optimization models, sensitivity analysis	1.2
	12 Jan – 16 Jan	Classification of optimization models	1.3
Modeling		Introduction to GMPL and GUSEK, resource allocation models	2.1
	3	Work scheduling models	2.2
	19 Jan – 23 Jan	Blending models	2.4
	4	Production process models	2.5
	26 Jan – 30 Jan	Multiperiod models	2.6
	5	Sets, summations, for statements	2.3
	2 Feb – 6 Feb	Resource allocation models, revisited	2.1
		Blending models, revisited	2.4
	6	Multiperiod models, revisited	2.6
	9 Feb – 13 Feb	Keview	
		Exam I	

Unit	Week	Topic	Readings
Algorithms	7 16 Feb – 20 Feb	Work scheduling models, revisited Production process models, revisited Introduction to algorithm design	2.2 2.5 5.1–5.2
	8 23 Feb – 27 Feb	Improving search: finding better solutions Improving search: convexity and optimality Improving search: review	6.1-6.2 6.3 6.1-6.3
	9 2 Mar – 6 Mar	Geometry and algebra of corner points Fundamental theorem of LP Linear programs in canonical form	7.1 7.2 2.8, 7.3
	10 9 Mar – 13 Mar	Basic solutions in canonical form LPs The simplex method	7.3 8.1
	11 16 Mar – 20 Mar	Spring Break	
	12 23 Mar – 27 Mar	The simplex method: review Degeneracy, convergence, multiple optimal solutions The two-phase simplex method	8.1 8.3 8.4
Duality	13 30 Mar – 3 Apr	Bounds and the dual LP Review Exam 2	9.1, 9.2
	14 6 Apr – 10 Apr	Weak and strong duality, complementary slackness An economic interpretation of LP duality Maximin and minimax objectives	9.3 9.6 2.7
Modeling revisited	15 13 Apr – 17 Apr	LP duality and game theory Introduction to networks and the shortest path problem Modeling with the shortest path problem	handout 2.9 2.9
	16 20 Apr – 24 Apr	Modeling with the shortest path problem, cont. Review	2.9
	17 27 Apr – 29 Apr	Review	