
SA305 – Linear Programming Spring 2016
Asst. Prof. Nelson Uhan

Lesson 14. Introduction to Algorithm Design

1 What is an algorithm?

● An algorithm is a sequence of computational steps that takes a set of values as input and produces a set
of values as output

● For example:

○ input = a linear program
○ output = an optimal solution to the LP, or a statement that LP is infeasible or unbounded

● Types of algorithms for optimization models:

○ Exact algorithms �nd an optimal solution to the problem, no matter how long it takes
○ Heuristic algorithms attempt to �nd a near-optimal solution quickly

● Why is algorithm design important?

2 �e knapsack problem

● You are a thief deciding which precious metals to steal from a vault:

Metal Weight (kg) Total Value
1 Gold 10 100
2 Silver 20 120
3 Bronze 25 200
4 Platinum 5 75

● You have a knapsack that can hold at most 30 kg

● Assume you can take some or all of each metal

● Which items should you take to maximize the value of your the�?

● A linear program:
xi = fraction of metal i taken for i ∈ {1, 2, 3, 4}

max 100x1 + 120x2 + 200x3 + 75x4
s.t. 10x1 + 20x2 + 25x3 + 5x4 ≤ 30

0 ≤ xi ≤ 1 for i ∈ {1, 2, 3, 4}

● Try to come up with the best possible feasible solution you can

● What was your methodology?

1



3 Some possible algorithms for the knapsack problem

3.1 Enumeration

● Näıve idea: just list all the possible solutions, pick the best one

● One problem: since the decision variables are continuous, there are an in�nite number of feasible
solutions!

● Suppose we restrict our attention to feasible solutions where xi ∈ {0, 1} for i ∈ {1, 2, 3, 4}
● How many di�erent possible feasible solutions are there?

○ For 4 variables, there are at most 0-1 feasible solutions

○ For n variables, there are at most 0-1 feasible solutions

● �e number of possible 0-1 solutions grows very, very fast:

n 5 10 15 20 25 50
2n 32 1024 32,768 1,048,576 33,554,432 1,125,899,906,842,624

● Even if you could evaluate 230 ≈ 1 billion solutions per second (check feasibility and compute objective
value), evaluating all solutions when n = 50 would take more than 12 days!

● �is enumeration approach is impractical for even relatively small problems

3.2 Best bang for the buck

● Idea: Be greedy and take the metals with the best “bang for the buck”: best value-to-weight ratio

● For this particular instance of the knapsack problem:

Metal Weight (kg) Total Value Value-to-weight ratio

1 Gold 10 100

2 Silver 20 120

3 Bronze 25 200

4 Platinum 5 75

● Optimal solution and value:

2



● �is “greedy algorithm” turns out to be an exact algorithm for the knapsack problem

● Some issues:

○ How do we know this algorithm always �nds an optimal solution?
○ Can this be extended to LPs with more constraints?

4 What should we ask when designing algorithms?

1. Is there an optimal solution? Is there even a feasible solution?

● e.g. an LP can be unbounded or infeasible – can we detect this quickly?

2. If there is an optimal solution, how do we know if the current solution is one? Can we characterize
mathematically what an optimal solution looks like, i.e., can we identify optimality conditions?

3. If we are not at an optimal solution, how can we get to a feasible solution better than our current one?

● �is is the fundamental question in algorithm design, and o�en tied to the characteristics of an
optimal solution

4. How do we start an algorithm? At what solution should we begin?

● Starting at a feasible solution usually makes sense – can we even �nd one quickly?

3


