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Lesson 17. Geometry and Algebra of “Corner Points”

0 Warm up

Example 1. Consider the system of equations

3x1 + x2 − 7x3 = 17
x1 + 5x2 = 1

−2x1 + 11x3 = −24
(∗)

Let A =
⎛
⎜
⎝

3 1 −7
1 5 0
−2 0 11

⎞
⎟
⎠
. We have that det(A) = 84.

● Does (∗) have a unique solution, no solutions, or an in�nite number of solutions?

● Are the row vectors of A linearly independent? How about the column vectors of A?

● What is the rank of A? Does A have full row rank?

1 Overview

● Due to convexity, local optimal solutions of LPs are global optimal
solutions

⇒ Improving search �nds global optimal solutions of LPs

● �e simplex method: improving search among “corner points” of
the feasible region of an LP

● How can we describe “corner points” of the feasible region of an
LP?

● For LPs, is there always an optimal solution that is a “corner
point”?
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2 Polyhedra and extreme points

● A polyhedron is a set of vectors x that satisfy a �nite collection of linear constraints (equalities and
inequalities)

○ Also referred to as a polyhedral set

● In particular:

● Recall: the feasible region of an LP – a polyhedron – is a convex feasible region

● Given a convex feasible region S, a solution x ∈ S is an extreme point if there does not exist two distinct
solutions y, z ∈ S such that x is on the line segment joining y and z

○ i.e. there does not exist λ ∈ (0, 1) such that x = λy + (1 − λ)z

Example 2. Consider the polyhedron S and its graph below. What are the extreme points of S?

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = (x1, x2) ∈ R2
∶

x1 + 3x2 ≤ 15 (1)
x1 + x2 ≤ 7 (2)
2x1 + x2 ≤ 12 (3)

x1 ≥ 0 (4)
x2 ≥ 0 (5)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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● “Corner points” of the feasible region of an LP⇔ extreme points

3 Basic solutions

● In Example 2, the polyhedron is described with 2 decision variables

● Each corner point / extreme point is

● Equivalently, each corner point / extreme point is

● Is there a connection between the number of decision variables and the number of active constraints at
a corner point / extreme point?

● Convention: all variables are on the LHS of constraints, all constants are on the RHS

● A collection of constraints de�ning a polyhedron are linearly independent if the LHS coe�cient matrix
of these constraints has full row rank
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Example 3. Consider the polyhedron S given in Example 2. Are constraints (1) and (3) linearly independent?

● Given a polyhedron S with n decision variables, x is a basic solution if
(a) it satis�es all equality constraints
(b) at least n constraints are active at x and are linearly independent

● x is a basic feasible solution (BFS) if it is a basic solution and satis�es all constraints of S

Example 4. Consider the polyhedron S given in Example 2. Verify that (3, 4) and (21/5, 18/5) are basic
solutions. Are these also basic feasible solutions?

Example 5. Consider the polyhedron S given in Example 2.

a. Compute the basic solution x active at constraints (3) and (5). Is x a BFS? Why?
b. In words, how would you �nd all the basic feasible solutions of S?
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4 Equivalence of extreme points and basic feasible solutions

● From our examples, it appears that for polyhedra, extreme points are the same as basic feasible solutions

Big�eorem 1. Suppose S is a polyhedron. �en x is an extreme point of S if and only if x is a basic feasible
solution.

● See Rader p. 243 for a proof

● We use “extreme point” and “basic feasible solution” interchangeably

5 Adjacency

● An edge of a polyhedron S with n decision variables is the set of solutions in S that are active at (n − 1)
linearly independent constraints

Example 6. Consider the polyhedron S given in Example 2.

a. How many linearly independent constraints need to be active for an edge of this polyhedron?
b. Describe the edge associated with constraint (2).

● Edges appear to connect “neighboring” extreme points

● Two extreme points of a polyhedron S with n decision variables are adjacent if there are (n−1) common
linearly independent constraints at active both extreme points

○ Equivalently, two extreme points are adjacent if the line segment joining them is an edge of S

Example 7. Consider the polyhedron S given in Example 2.

a. Verify that (3, 4) and (5, 2) are adjacent extreme points.
b. Verify that (0, 5) and (6, 0) are not adjacent extreme points.

● We can move between adjacent extreme points by “swapping” active linearly independent constraints
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6 Extreme points are good enough: the fundamental theorem of linear programming

Big�eorem 2. Let S be a polyhedron with at least 1 extreme point. Consider the LP that maximizes a linear
function cTx over x ∈ S. �en this LP is unbounded, or attains its optimal value at some extreme point of S.

“Proof ” by picture.

● Assume the LP has �nite optimal value

● �e optimal value must be attained at the boundary of the polyhedron, otherwise:

x1

x2

⇒ �e optimal value is attained at an extreme point or “in the middle of a boundary”

● If the optimal value is attained “in the middle of a boundary”, there must be multiple optimal solutions,
including an extreme point:

x1

x2

x1

x2

⇒ �e optimal value is always attained at an extreme point

● For LPs, we only need to consider extreme points as potential optimal solutions

● It is still possible for an optimal solution to an LP to not be an extreme point

● If this is the case, there must be another optimal solution that is an extreme point
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7 Food for thought

● Does a polyhedron always have an extreme point?

● We need to be a little careful with these conclusions – what if the Big �eorem doesn’t apply?

● Next time: we will learn how to convert any LP into an equivalent LP that has at least 1 extreme point,
so we don’t have to be (so) careful
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