Lesson 19. Basic Solutions in Canonical Form LPs

1 Overview

• Recall: an LP in canonical form looks like

minimize / maximize
$$\mathbf{c}^{\mathsf{T}} \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$ (CF)
 $\mathbf{x} \ge \mathbf{0}$

- All decision variables are nonnegative
- All general constraints are equalities
- Also recall: a solution **x** of an LP with *n* decision variables is a **basic solution** if
 - (a) it satisfies all equality constraints
 - (b) at least n constraints are active at \mathbf{x} and are linearly independent
- The solution **x** is a **basic feasible solution (BFS)** if it is a basic solution and satisfies <u>all</u> constraints of the LP
- This lesson: what do basic solutions in canonical form LPs look like?

2 Example

• Consider the following canonical form LP:

maximize	3x + 8y			
subject to	$x + 4y + s_1$	=	20 (1)
	x + y + s	s ₂ =	9 (1	2)
	2x + 3y	$+ s_3 =$	20 (4	3)
	x	≥	: 0 (4	4)
	у	≥	0 (1	5)
	s_1	≥	: 0 (4	6)
	S	$s_2 \geq$: 0 (*	7)
		$s_3 \geq$: 0 (4	8)

• Identify the matrix *A* and the vectors **c**, **x**, and **b** in the above canonical form LP.

- Suppose **x** is a basic solution
 - How many linearly independent constraints must be active at **x**?
 - How many of these must be equality constraints?
 - How many of these must be nonnegativity bounds?
- Let's compute the basic solution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6), and (8)
 - It turns out that the constraints (1), (2), (3), (6), and (8) are linearly independent
 - Since the basic solution is active at the nonnegativity bounds (6) and (8),
 - The other variables, x, y, and s_2 are potentially nonzero
 - Substituting $s_1 = 0$ and $s_3 = 0$ into the other constraints (1), (2), and (3), we get

$$\begin{array}{l} x + 4y + (0) &= 20 \\ x + y &+ s_2 &= 9 \\ 2x + 3y &+ (0) &= 20 \end{array}$$
 (*)

• Let $\mathbf{x}_B = (x, y, s_2)$ and *B* be the submatrix of *A* consisting of columns corresponding to *x*, *y*, and *s*₂:

$$B = \begin{pmatrix} 1 & 4 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$

• Note that (*) can be written as

 $B\mathbf{x}_B = \mathbf{b} \tag{(**)}$

• The columns of *B* linearly independent. Why?

• (**) has a unique solution. Why?

- It turns out that the solution to (**) is $\mathbf{x}_B = (4, 4, 1)$
- Put it together: the basic solution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6), and (8) is

3 Generalizing the example

- Now let's generalize what happened in the example above
- Consider the generic canonical form LP (CF)
 - Let n = number of decision variables
 - Let m = number of equality constraints
 - In other words, *A* has *m* rows and *n* columns
 - Assume $m \le n$ and $\operatorname{rank}(A) = m$
- Suppose **x** is a basic solution
 - How many linearly independent constraints must be active at **x**?
 - Since **x** satisfies A**x** = **b**, how many nonnegativity bounds must be active?
- Generalizing our observations from the example, we have the following theorem:

Theorem 1. If x is a basic solution of a canonical form LP, then there exists *m* basic variables of x such that

- (a) the columns of *A* corresponding to these *m* variables are linearly independent;
- (b) the other n m nonbasic variables are equal to 0.

The set of basic variables is referred to as the **basis** of **x**.

• Let's check our understanding of this theorem with the example

• Back in the example, <i>n</i> =		and <i>m</i> =		
-----------------------------------	--	----------------	--	--

- Recall that $\mathbf{x} = (x, y, s_1, s_2, s_3) = (4, 4, 0, 1, 0)$ is a basic solution
- Which variables of **x** correspond to m LI columns of A?
- Which n m variables of **x** are equal to 0?

- The basic variables of x are
 The nonbasic variables of x are
 The basis of x is
- Let *B* be the submatrix of *A* consisting of columns corresponding to the *m* basic variables
- Let \mathbf{x}_B be the vector of these *m* basic variables
- Since the columns of *B* are linearly independent, the system $B\mathbf{x}_B = \mathbf{b}$ has a unique solution
 - This matches what we saw in (**) in the above example
- The *m* basic variables are potentially nonzero, while the other n m nonbasic variables are forced to be zero