Lesson 20. The Simplex Method

0 Review

- Given an LP with n decision variables, a solution **x** is **basic** if:
	- (a) it satisfies all equality constraints
	- (b) at least n linearly independent constraints are active at **x**
- A **basic feasible solution (BFS)** is a basic solution that satisfies all constraints of the LP
- **Canonical form LP**:

maximize
$$
c^T x
$$

subject to $Ax = b$
 $x \ge 0$

- \circ *m* equality constraints and *n* decision variables (e.g. *A* has *m* rows and *n* columns).
- \circ Standard assumptions: $m \leq n$, rank $(A) = m$
- If **x** is a basic solution of a canonical form LP, there exist m **basic variables** of **x** such that
	- (a) the columns of A corresponding to these m variables are linearly independent
	- (b) the other $n m$ **nonbasic variables** are equal to 0
- The set of basic variables is the **basis** of **x**

1 Overview

- General improving search algorithm
	- 1: Find an initial feasible solution **x** 0
	- 2: Set $t = 0$
	- 3: **while** x^t is not locally optimal **do**
	- 4: Determine a simultaneously improving and feasible direction **d** at x^t
	- 5: Determine step size λ
	- 6: Compute new feasible solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda \mathbf{d}$
	- 7: Set $t = t + 1$
	- 8: **end while**
- The simplex method is a specialized version of improving search
	- For canonical form LPs
	- $\circ~$ Start at a BFS in Step 1
	- Consider directions that point towards other BFSes in Step 4
	- Take the maximum possible step size in Step 5

Example 1. Throughout this lesson, we will use the canonical form LP below:

maximize
$$
13x + 5y
$$

\nsubject to $4x + y + s_1 = 24$
\n $x + 3y + s_2 = 24$
\n $3x + 2y + s_3 = 23$
\n $x, y, s_1, s_2, s_3 \ge 0$

2 Initial solutions

• For now, we will start by guessing an initial BFS

Example 2. Verify that $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ is a BFS with basis $\mathcal{B}^0 = \{s_1, s_2, s_3\}$.

3 Finding feasible directions

- Two BFSes are *adjacent* if their bases differ by exactly 1 variable
- Suppose x^t is the current BFS with basis \mathcal{B}^t
- Approach: consider directions that point towards BFSes adjacent to **x** t
- To get a BFS adjacent to \mathbf{x}^t :
	- \circ Put one nonbasic variable into \mathcal{B}^t
	- \circ Take one basic variable out of \mathcal{B}^{t}
- Suppose we want to put nonbasic variable y into \mathcal{B}^t
- This corresponds to the **simplex direction** d^y corresponding to nonbasic variable y

● **d** ^y has a component for every decision variable

 \circ e.g. $\mathbf{d}^y = (d_x^y, d_y^y, d_{s_1}^y, d_{s_2}^y, d_{s_3}^y)$ for the LP in Example 1

- The components of the simplex direction \mathbf{d}^y corresponding to nonbasic variable y are:
	- \circ $d_y^y = 1$
	- \circ $d_z^y = 0$ for all other nonbasic variables z
	- \circ d_{w}^{y} (uniquely) determined by A **d** = **0** for all basic variables w
- Why does this work? Remember for LPs, **d** is a feasible direction at **x** if
	- **a** ^T**d** ≤ 0 for each active constraint of the form **a** ^T**x** ≤ b
	- \circ **a^Td** \geq 0 for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} \geq b$
	- \circ **a**^T**d** = 0 for each active constraint of the form $\mathbf{a}^T \mathbf{x} = b$
- Each nonbasic variable has a corresponding simplex direction

Example 3. The basis of the BFS $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ is $\mathcal{B}^0 = \{s_1, s_2, s_3\}$. For each nonbasic variable, x and y, we have a corresponding simplex direction. Compute the simplex directions \mathbf{d}^x and \mathbf{d}^y .

4 Finding improving directions

- Once we've computed the simplex direction for each nonbasic variable, which one do we choose?
- We choose a simplex direction **d** that is improving
- Recall that if $f(\mathbf{x})$ is the objective function, **d** is an improving direction at **x** if

$$
\nabla f(\mathbf{x})^T \mathbf{d}
$$
 $\begin{cases} > 0 & \text{when maximizing } f \\ < 0 & \text{when minimizing } f \end{cases}$

• For LPs, $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$, and so $\nabla f(\mathbf{x}) =$ for any **x**

• The **reduced cost** associated with nonbasic variable *y* is

 $\bar{c}_y = \mathbf{c}^\top \mathbf{d}^y$

where \mathbf{d}^y is the simplex direction associated with y

• The simplex direction \mathbf{d}^y associated with nonbasic variable y is improving if

 \bar{c}_y $\begin{cases} \bar{c}_y \end{cases}$ > 0 for a maximization LP < 0 for a minimization LP

Example 4. Consider the BFS $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ with basis $\mathcal{B}^0 = \{s_1, s_2, s_3\}$. Compute the reduced costs \bar{c}_x and \bar{c}_y for nonbasic variables x and y, respectively. Are \mathbf{d}^x and \mathbf{d}^y improving?

- If there is an improving simplex direction, we choose it
- If there is more than 1 improving simplex direction, we can choose any one of them
	- One option **Dantzig's rule**: choose the improving simplex direction with the most improving reduced cost (maximization LP – most positive, minimization LP – most negative)
- **If there are no improving simplex directions, then the current BFS is a global optimal solution**

5 Determining the maximum step size

- We've picked an improving simplex direction how far can we go in that direction?
- Suppose x^t is our current BFS, **d** is the improving simplex direction we chose
- Our next solution is $\mathbf{x}^t + \lambda \mathbf{d}$ for some value of $\lambda \ge 0$
- How big can we make λ while still remaining feasible?
- Recall that we computed **d** so that A**d** = **0**
- $\mathbf{x}^t + \lambda \mathbf{d}$ satisfies the equality constraints $A\mathbf{x} = \mathbf{b}$ no matter how large λ gets, since

$$
A(\mathbf{x}^t + \lambda \mathbf{d}) = A\mathbf{x}^t + \lambda A\mathbf{d} = A\mathbf{x}^t = \mathbf{b}
$$

● So, the only thing that can go wrong are the nonnegativity constraints

 \Rightarrow What is the largest λ such that $\mathbf{x}^t + \lambda \mathbf{d} \geq 0$?

Example 5. Suppose we choose the improving simplex direction $\mathbf{d}^x = (1, 0, -4, -1, 3)$. Compute the maximum step size λ for which $\mathbf{x}^0 + \lambda \mathbf{d}^x$ remains feasible.

● Note that only negative components of **d** determine maximum step size:

$$
x_j + \lambda d_j \stackrel{?}{\geq} 0
$$

• The **minimum ratio test**: starting at the BFS **x**, if any component of the improving simplex direction **d** is negative, then the maximum step size is

$$
\lambda_{\max} = \min\left\{\frac{x_j}{-d_j} : d_j < 0\right\}
$$

Example 6. Verify that the minimum ratio test yields the same maximum step size you found in Example 5.

- What if **d** has no negative components?
- For example:
	- \circ Suppose $\mathbf{x}^0 = (0, 0, 1, 2, 3)$ is a BFS
	- \circ **d** = (1, 0, 2, 4, 3) is an improving simplex direction at **x**
	- \circ Then the next solution is

$$
\mathbf{x}^0 + \lambda \mathbf{d} = (\lambda, 0, 1 + 2\lambda, 2 + 4\lambda, 3 + 3\lambda)
$$
 for some value of $\lambda \ge 0$

 \circ **x**⁰ + λ **d** \geq 0 for all $\lambda \geq 0!$

- We can improve our objective function and remain feasible forever!
- \Rightarrow The LP is unbounded
- **Test for unbounded LPs**: if all components of an improving simplex direction are nonnegative, then the LP is unbounded

6 Updating the basis

- We have our improving simplex direction **d** and step size λ_{max}
- We can compute our new solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda_{\text{max}} \mathbf{d}$
- We also update the basis: update the set of basic variables
- **Entering and leaving variables**
	- o The nonbasic variable corresponding to the chosen simplex direction enters the basis and becomes basic: this is the **entering variable**
	- Any one of the basic variables that define the maximum step size leaves the basis and becomes nonbasic: this is the **leaving variable**

Example 7. Compute x^1 . What is the basis \mathcal{B}^1 of x^1 ?

7 Putting it all together: the simplex method

Step 0: Initialization. Identify a BFS \mathbf{x}^0 . Set solution index $t = 0$.

- **Step 1: Simplex directions.** For each nonbasic variable y, compute the corresponding simplex direction \mathbf{d}^y and its reduced cost \bar{c}_y .
- **Step 2: Check for optimality.** If no simplex direction is improving, stop. The current solution x^t is optimal. Otherwise, choose any improving simplex direction **d**. Let x_e denote the entering variable.
- **Step 3: Step size.** If $d \ge 0$, stop. The LP is unbounded. Otherwise, choose the leaving variable x_{ℓ} by computing the maximum step size λ_{max} according to the minimum ratio test.
- **Step 4: Update solution and basis.** Compute the new solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda_{\max} \mathbf{d}$. Replace x_ℓ with x_e in the basis. Set $t = t + 1$. Go to Step 1.