Lesson 23. Degeneracy, Convergence, Multiple Optimal Solutions

0 Warm up

Example 1. Suppose we are using the simplex method to solve the following canonical form LP:

maximize	10x + 3y		
subject to	$x + y + s_1$	= 4	(1)
	$5x + 2y + s_2$	= 11	(2)
	у -	$+ s_3 = 4$	(3)
	x	≥ 0	(4)
	у	≥ 0	(5)
	<i>s</i> ₁	≥ 0	(6)
	<i>s</i> ₂	≥ 0	(7)
		$s_3 \ge 0$	(8)

Let $\mathbf{x} = (x, y, s_1, s_2, s_3)$. Our current BFS is $\mathbf{x}^t = (0, 4, 0, 3, 0)$ with basis $\mathcal{B}^t = \{y, s_1, s_2\}$. The simplex directions are $\mathbf{d}^x = (1, 0, -1, -5, 0)$ and $\mathbf{d}^{s_3} = (0, -1, 1, 2, 1)$. Compute \mathbf{x}^{t+1} and \mathcal{B}^{t+1} .

- In the above example, the step size $\lambda_{max} = 0$
- As a result, $\mathbf{x}^{t+1} = \mathbf{x}^t$: it looks like our solution didn't change!
- The basis did change, however: $\mathcal{B}^{t+1} \neq \mathcal{B}^t$
- Why did this happen?

1 Degeneracy

- A BFS **x** of an LP with *n* decision variables is **degenerate** if there are more than *n* constraints active at **x**
 - i.e. there are multiple collections of n linearly independent constraints that define the same **x**

Example 2. Is \mathbf{x}^t in Example 1 degenerate? Why?

- In $\mathbf{x}^t = (0, 4, 0, 3, 0)$ in Example 1, "too many" of the nonnegativity constraints are active
 - As a result, some of the basic variables are equal to zero
- Recall: a BFS of a canonical form LP with *n* decision variables and *m* equality constraints has
 - basic variables, potentially zero or nonzero
 nonbasic variables, always equal to 0
- Suppose **x** is a degenerate BFS, with n + k active constraints ($k \ge 1$)
- Then nonnegativity bounds must be active, which is larger than n m
- Therefore: a BFS **x** of a canonical form LP is degenerate if
- As a result, a degenerate BFS may correspond to several bases
 - $\circ~$ e.g. in Example 1, the BFS (0, 4, 0, 3, 0) has bases:

- Every step of the simplex method
 - does not necessarily move to a geometrically adjacent extreme point
 - does move to an adjacent BFS (in particular, the bases differ by exactly 1 variable)
- At a degenerate BFS, the simplex method might "get stuck" for a few steps
 - Same BFS, different bases, different simplex directions
 - Zero-length moves: $\lambda_{max} = 0$
- When $\lambda_{\text{max}} = 0$, just proceed as usual
- Simplex computations will normally escape a sequence of zero-length moves and move away from the current BFS

2 Convergence

- In extreme cases, degeneracy can cause the simplex method to cycle over a set of bases that all represent the same extreme point
 - See Rader p. 291 for an example
- Can we guarantee that the simplex method terminates?
- Yes! Anticycling rules exist
- Easy anticycling rule: Bland's rule
 - Fix an ordering of the decision variables and rename them so that they have a common index
 - ♦ e.g. $(x, y, s_1, s_2, s_3) \rightarrow (x_1, x_2, x_3, x_4, x_5)$
 - Entering variable: choose nonbasic variable with <u>smallest index</u> among those corresponding to improving simplex directions
 - Leaving variable: choose basic variable with smallest index among those that define λ_{max}

3 Multiple optimal solutions

- Suppose our current BFS is \mathbf{x}^t , and y is the entering variable
- The change in objective function value from \mathbf{x}^t to $\mathbf{x}^t + \lambda \mathbf{d}^y$ ($\lambda \ge 0$) is
- \Rightarrow We can use reduced costs to compute changes in objective function
- Suppose we solve a canonical form maximization LP with decision variables $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$ using the simplex method, and end up with:

$$\mathbf{x}^{t} = (0, 150, 0, 200, 50) \qquad \qquad \mathcal{B}^{t} = \{x_{2}, x_{4}, x_{5}\} \\ \mathbf{d}^{x_{1}} = \left(1, -\frac{1}{2}, 0, -\frac{3}{2}, -\frac{1}{2}\right) \qquad \qquad \mathbf{d}^{x_{3}} = \left(0, -\frac{1}{2}, 1, \frac{1}{2}, \frac{1}{2}\right) \\ \bar{c}_{x_{1}} = 0 \qquad \qquad \bar{c}_{x_{3}} = -25 \end{cases}$$

- Is **x**^t optimal?
- Are there multiple optimal solutions?
 - Because the reduced cost $\bar{c}_{x_1} = 0$,
 - Let's explore using x_1 as an entering variable:

- In general, if there is a reduced cost equal to 0 at an optimal solution, there <u>may</u> be other optimal solutions
 - $\circ~$ The zero reduced cost must correspond to a simplex direction with $\lambda_{max} > 0$