Lesson 25. Weak and Strong Duality

1 Practice taking duals!

Example 1. State the dual of the following linear program.

maximize
$$5x_1 + x_2 - 4x_3$$

subject to $x_1 + x_2 + x_3 + x_4 = 19$
 $4x_2 + 8x_4 \le 55$
 $x_1 + 6x_2 - x_3 \ge 7$
 x_1 free, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \le 0$

2 Weak duality

- Let [max] and [min] be a primal-dual pair of LPs
 - o [max] is the maximization LP
 - [min] is the minimization LP
 - o [min] is the dual of [max], and [max] is the dual of [min]
- Let z^* be the optimal value of [max]
- In the previous lesson, we saw that
 - $\circ~$ Any feasible solution to [max] gives a lower bound on z^*
 - Any feasible solution to [min] gives an upper bound on z^*
- Putting these observations together:

Weak duality theorem.

$$\left(\begin{array}{c} \text{Objective function value} \\ \text{of any feasible solution to } [\text{max}] \end{array}\right) \leq \left(\begin{array}{c} \text{Objective function value} \\ \text{of any feasible solution to } [\text{min}] \end{array}\right)$$

• The weak duality theorem has several interesting consequences

Corollary 1. If \mathbf{x}^* is a feasible solution to [max], \mathbf{y}^* is a feasible solution to [min], and

$$\begin{pmatrix}
\text{Objective function value} \\
\text{of } \mathbf{x}^* \text{ in [max]}
\end{pmatrix} = \begin{pmatrix}
\text{Objective function value} \\
\text{of } \mathbf{y}^* \text{ in [min]}
\end{pmatrix}$$

then (i) \mathbf{x}^* is an optimal solution to [max], and (ii) \mathbf{y}^* is an optimal solution to [min].

Proof. • Let's start with (i):

$$\left(\begin{array}{c} \text{Objective function value} \\ \text{of } \mathbf{x}^* \text{ in } [\text{max}] \end{array} \right) = \left(\begin{array}{c} \text{Objective function value} \\ \text{of } \mathbf{y}^* \text{ in } [\text{min}] \end{array} \right) \geq \left(\begin{array}{c} \text{Objective function value} \\ \text{of any feasible solution to } [\text{max}] \end{array} \right)$$

- Therefore **x*** must be an optimal solution to [max]
- (ii) can be argued similarly

Corollary 2. (i) If [max] is unbounded, then [min] must be infeasible.

(ii) If [min] is unbounded, then [max] must be infeasible.

Proof. • Let's start with (i)

ullet Proof by contradiction: suppose [min] is feasible, and let y^* be a feasible solution to [min]

$$\left(\begin{array}{c} \text{Objective function value} \\ \text{of } \mathbf{y}^* \text{ in [min]} \end{array}\right) \ge \left(\begin{array}{c} \text{Objective function value} \\ \text{of any feasible solution to [max]} \end{array}\right)$$

- Therefore [max] cannot be unbounded, which is a contradiction
- (ii) can be argued similarly
- $\bullet~$ Note that primal infeasibility does \underline{not} imply dual unboundedness
- It is possible that both primal and dual LPs are infeasible
 - o See Rader p. 328 for an example

3 Strong duality

Strong duality theorem. Let [P] denote a primal LP and [D] its dual.

- a. If [P] has a finite optimal solution, then [D] also has a finite optimal solution with $\underline{\text{the same objective}}$ function value.
- b. If [P] and [D] both have feasible solutions, then
 - [P] has a finite optimal solution **x***;
 - [D] has a finite optimal solution y*;
 - the optimal values of [P] and [D] are equal.
- This is an AMAZING fact
- Useful from theoretical, algorithmic, and modeling perspectives
- Even the simplex method implicitly uses duality: the reduced costs are essentially solutions to the dual that are infeasible until the last step