Lesson 27. Maximin and Minimax Objectives

1 The minimum of a collection of functions

Example 1. Santa Claus is trying to decide how to give candy canes to three children: Ann, Bob, and Carol. Because Santa is a very busy person, he has decided to give the same number of candy canes to each child. Let *x* be the number of candy canes each child receives. Also, because Santa knows everything, he knows the happiness level of each child as a function of the number of candy canes he or she receives:

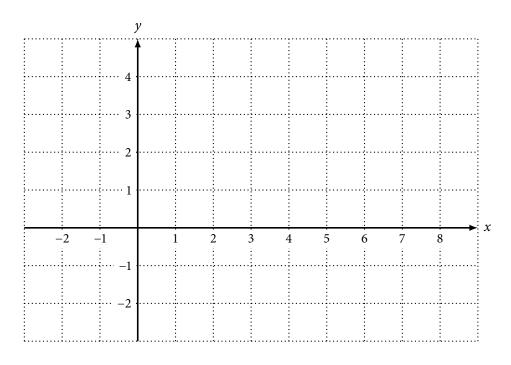
Ann:
$$1 + 2x$$
 Bob: $2 + x$ Carol: $5 - \frac{1}{2}x$

Due to the struggling economy, Santa's budget limits him to give each child at most 6 candy canes. To be fair to all 3 children, he has decided that he wants to **maximize the minimum happiness level of all 3 children**. In other words, he is trying to maximize the worst-case happiness level.

Let f(x) be the minimum happiness level of all 3 children when each child receives x candy canes:

What is $f(0)$? $f(1)$? $f(2)$?		

Graph f(x):



By looking at the graph of $f(x)$, give an optimal solution to Santa's optimization problem. What are Ann's Bob's, and Carol's happiness levels at this solution?
The minimum of a collection of numbers is the largest value that is less than or equal to each number in the collection.
For example, consider $\min\{3, 8, -2, 6, 9\}$.
Using this observation, we can rewrite Santa's optimization problem as:
This looks familiar
What if we maximized the <u>sum</u> of the happiness factors of all 3 children? What is the optimal solution? What is Ann's, Bob's, and Carol's <u>happiness</u> levels at this solution?

2 Maximin objective functions

- Define:
 - ∘ decision variables x_j for $j \in \{1, ..., n\}$
 - ∘ constants a_{ij} for $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$
 - \circ constants b_i for $i \in \{1, ..., m\}$
- Consider an optimization model with a maximin objective function:

maximize
$$\min \left\{ \sum_{j=1}^{n} a_{1j}x_j + b_1, \sum_{j=1}^{n} a_{2j}x_j + b_2, \dots, \sum_{j=1}^{n} a_{mj}x_j + b_m \right\}$$
 subject to (some constraints)

- We can convert this model into a linear program:
 - Add auxiliary decision variable *z*
 - Change objective and add constraints:

maximize
$$z$$

subject to $z \le \sum_{j=1}^{n} a_{ij}x_j + b_i$ for $i \in \{1, ..., m\}$
(some constraints)

• Main idea: the minimum of a collection of numbers is the largest value that is less than or equal to each number in the collection.

3 Minimax objective functions

• We can similarly convert an optimization model with a **minimax objective function**

minimize
$$\max \left\{ \sum_{j=1}^{n} a_{1j}x_j + b_1, \sum_{j=1}^{n} a_{2j}x_j + b_2, \dots, \sum_{j=1}^{n} a_{mj}x_j + b_m \right\}$$
 subject to (some constraints)

into a linear program:

- Add auxiliary decision variable z
- o Change objective and add constraints:

minimize
$$z$$

subject to $z \ge \sum_{j=1}^{n} a_{ij}x_j + b_i$ for $i \in \{1, ..., m\}$
(some constraints)

• Similar idea: the maximum of a collection of numbers is the smallest value that is greater than or equal to each number in the collection.

3

Example 2. The State of Simplex wants to divide the effort of its on-duty officers among 8 highway segments to reduce speeding incidents. You, the analyst, were able to estimate that for each highway segment $j \in \{1, ..., 8\}$, the weekly reduction in speeding incidents is $r_j + s_j x_j$, where x_j is the number of officers assigned to segment j. Due to local ordinances, there is an upper bound u_j on the number of officers assigned to highway segment j per week, for $j \in \{1, ..., 8\}$. There are 25 officers per week to allocate.

The State of Simplex has decided that it wants to maximize the worst-case reduction in speeding incidents among all highway segments. Write a linear program that allocates officers to highway segments according to this objective.

Input parameters.

```
H = \text{set of highway segments} = \{1, \dots, 8\}
r_j, s_j = \text{coefficients on weekly incident reduction function for highway segment } j \qquad \text{for } j \in H
u_j = \text{upper bound on number of officers assigned to highway segment } j \text{ per week} \qquad \text{for } j \in H
N = \text{number of officers per week to allocate} = 25
```

Decision variables.

 x_j = number of officers assigned to highway segment j for $j \in H$

Optimization model with maximin objective function.

maximize
$$\min \left\{ r_1 + s_1 x_1, r_2 + s_2 x_2, \dots, r_8 + s_8 x_8 \right\}$$

subject to $\sum_{j \in H} x_j = N$
 $x_j \le u_j \quad \text{for } j \in H$
 $x_j \ge 0 \quad \text{for } j \in H$

Equivalent linear program.