Lesson 28. LP Duality and Game Theory

*i***nis lesson...**

• LP duality and two-player zero-sum game theory

Game theory

- Game theory is the mathematical study of strategic interactions, in which an individual's success depends on his/her own choice as well as the choices of others
- We'll look at one type of game, and use LP duality to give us some insight about behavior in these games

Two-player zero-sum games

- Two players make decisions simultaneously
- Payoff depends on joint decisions
- Zero-sum: whatever one person wins, the other person loses
- Examples:
	- **–** Rock-paper-scissors
	- **–** Advertisers competing for market share (gains/losses over existing market share)

Payoff matrices

- 2 players
	- **–** player R (for "row")
	- **–** player C (for "column")
- Player R chooses among m rows (**actions**)
- Player C chooses among n columns
- Example: rock-paper-scissors, $m = 3$, $n = 3$

- This is the **payoff matrix** for player R
- Zero-sum: Player C receives the negative

• Another example: $m = 2$, $n = 3$

- Suppose Player R chooses row 2, Player C chooses column 1
- What is the payoff of each player?

Pure and mixed strategies

- **Pure strategy**: pick one row (or column) over and over again
- **Mixed strategy**: each player assigns probabilities to each of his/her strategies
- For example:

- Suppose player R plays all three actions with equal probability
	- **–** Row 1 with probability 1/3
	- **–** Row 2 with probability 1/3
	- **–** Row 3 with probability 1/3
- For example:

- Suppose player R plays all three actions with equal probability
- ⇒ Can compute **expected payos**:
	- **–** If player C plays
		- * column 1:
		- * column 2:
		- * column 3:

Who has the advantage?

- Can we find "optimal" (mixed) strategies for two-player zero-sum games?
- What can player R guarantee in return, regardless of what C chooses?

Player R and payoff lower bounds

- Suppose Player R plays all three actions with equal probability
- With this mixed strategy, R can guarantee a payoff of at least:
- This is a lower bound on the payoff R gets when playing $(1/3, 1/3, 1/3)$

Player C and payoff upper bounds

- Player C's payoff = $-($ Player R's payoff)
- Player C wants to limit Player R's payoff
- Suppose Player C plays all three actions with equal probability
- With this mixed strategy, C can guarantee that R gets a payoff of at most:
- This is an upper bound on the payoff R gets when C plays $(1/3, 1/3, 1/3)$

Let's optimize: Player R's problem

- Want to decide mixed strategy that maximizes guaranteed payoff
- ⇒ Decision variables:

$$
x_i
$$
 = prob. of choosing action i for $i \in \{1, 2, 3\}$

• Optimization model:

• Player R's problem: maximin

• Convert Player R's problem to LP:

Player C's problem

- Want to decide mixed strategy that limits Player R's payo
- ⇒ Decision variables:

 y_i = prob. of choosing action i for $i \in \{1, 2, 3\}$

• Optimization model:

- Player C's problem: minimax
- Convert Player C's problem to LP:

Optimal mixed strategy for Player R

- Solve Player R's LP
- ⇒ Optimal mixed strategy for R guarantees that R can get at least:
	- This is the maximin payoff

Optimal mixed strategy for Player C

- Solve Player C's LP
- \Rightarrow Optimal mixed strategy for C guarantees that C can limit R's payoff to at most:
	- This is the minimax payoff
	- Note that maximin payoff $=$ minimax payoff $-$ **not** a coincidence

Fundamental Theorem of 2-Player Zero-Sum Games

- $A = m \times n$ payoff matrix for a 2-player zero-sum game
	- **–** a_{ij} = entries of A

Player R's problem:

$$
z_{R}^{*} = \max \min \left\{ \sum_{i=1}^{m} a_{i1} x_{i}, \dots, \sum_{i=1}^{m} a_{in} x_{i} \right\}
$$

s.t.
$$
\sum_{i=1}^{m} x_{i} = 1
$$

$$
x_{i} \ge 0 \text{ for } i \in \{1, ..., m\}
$$

Player C's problem:

$$
z_C^* = \min \max \left\{ \sum_{j=1}^n a_{1j} y_j, \dots, \sum_{j=1}^n a_{nj} y_j \right\}
$$

s.t.
$$
\sum_{j=1}^n y_j = 1
$$

$$
y_j \ge 0 \text{ for } j \in \{1, \dots, n\}
$$

- Then, $z_R^* = z_C^*$ i.e. **maximin payoff** = **minimax payoff**
- Why is this remarkable?
	- Think back to example
	- **–** Imagine you are Player R, and you have to announce in advance what your mixed strategy is
	- **–** Intuitively, this seems like a bad idea
	- But, if you play the optimal maximin strategy, you are guaranteed an expected payoff of 1/9
	- **–** And, Player C cannot do anything to prevent this
	- **–** Announcing the strategy beforehand does not cost you in this case
- Why is this true?
	- **–** Player R's LP and Player C's LP form a primal-dual pair
	- **–** Theorem follows immediately from strong duality for LP
	- For example, after some manipulation, it is easy to see that in our game, Player R's LP and Player C's LP are duals of each other

Player R's LP:

```
max z
s.t. 2x_1 - 2x_2 - x_3 + z \le 0-x_1 + x_2 + z \le 0-2x_1 + 2x<sub>3</sub> + z ≤ 0
        x_1 + x_2 + x_3 = 1x_1, x_2, x_3 \ge 0
```
Player C's LP:

$$
\min \quad w
$$

s.t.
$$
2y_1 - y_2 - 2y_3 + w \ge 0
$$

$$
-2y_1 + y_2 + w \ge 0
$$

$$
-y_1 + 2y_3 + w \ge 0
$$

$$
y_1 + y_2 + y_3 = 1
$$

$$
y_1, y_2, y_3 \ge 0
$$