SA305 – Linear Programming Spring 2016

Syllabus

Last updated: January 7, 2016

Course coordinator Assoc. Prof. David Phillips, dphillip@usna.edu

Course description Operations research (OR) is a broad field which, loosely speaking, investigates how mathematical techniques can be used to solve "real-life" decision-making problems. This course provides an introduction to linear programming, a fundamental technique used in OR. In particular, the course focuses on formulating mathematical optimization models (also called *mathematical programs*), and understanding the mathematical underpinnings of linear programming algorithms.

Textbook D. Rader, Deterministic Operations Research: Models and Methods in Linear Optimization, Wiley, 2010.

Schedule This schedule is subject to change.

Unit	Week	Topic	Readings	Homework
Overview	1	Introduction to operations research	1.1	
	1/12 – 1/15	Introduction to optimization modeling, classification of optimization models	1.2, 1.3	1.1(a,b,c,d) using trial-and-error
	2	Graphical solution of optimization models, sensitivity analysis	1.2	1.1(a,b,c,d), 1.2
Modeling	1/18-1/22	Resource allocation models, introduction to GMPL and GUSEK	2.1	2.1, 2.3*
		Work scheduling models	2.2	2.6
	3	Blending models	2.4	2.11*, 2.12
	1/25 -1/30	Production process models	2.5	2.9
		Production process models, cont.	2.5	2.10*
	2	Multiperiod models	2.6	inventory, finco
	2/1 - 2/5	Sets, summations, for statements	2.3	
		Resource allocation models, revisited	2.1	2.3^{\dagger} , 2.24^{\dagger} , diet* [†]
	5	Blending models, revisited	2.4	$2.13^{*\dagger}, 2.14^{\dagger}, 2.16^{\dagger}$
	2/8 -2/12	Multiperiod models, revisited	2.6	$2.20^{\dagger}, 2.22^{\dagger}$
		Review		
	6	Exam 1		
	2/15 - 2/19	Work scheduling models, revisited	2.2	2.6 [†] (challenge: 2.7, 2.8)
		Production process models, revisited	2.5	$2.9^{\dagger}, 2.10^{\dagger}$
		-		

^{* =} Formulate a model on paper and write accompanying GMPL code. † = Formulate a model using symbolic input parameters.

Unit	Week	Topic	Readings	Homework
Algorithms	7 2/22 – 2/26	Introduction to algorithm design Improving search: finding better solutions	5.1–5.2 6.1–6.2	6.1, 6.2, 6.8, 6.9
	8 2/29 - 3/4	Improving search: convexity and optimality Improving search: review Geometry and algebra of corner points	6.3 6.1–6.3 7.1	6.14, 6.18 7.2, 7.3
	9 3/7 - 3/11	Geometry and algebra of corner points, cont., fundamental theorem of LP Linear programs in canonical form Basic solutions in canonical form LPs	7.1–7.2 2.8, 7.3 7.3	7.4 7.14 7.16, 7.17
	10 3/14 - 3/18	Spring Break		
	11 3/21 – 3/25	The simplex method, cont. The simplex method: review	8.1 8.1 8.1	8.1, 8.2 8.3, 8.8
Duality	12 3/28 - 4/1	Degeneracy, convergence, multiple optimal solutions The two-phase simplex method Bounds and the dual LP	8.3 8.4 9.1, 9.2	8.7 8.11ab, 8.12a 9.1, 9.2, 9.3, 9.4
	13 4/4 – 4/8	Weak and strong duality, complementary slackness Review Exam 2	9.3	9.5, 9.7
	14 4/11 - 4/15	Duality review, maximin objectives Maximin and minimax objectives LP duality and game theory	9.1–9.3, 2.7 2.7 handout	pirates* [†] 2.30 [†] rock-paper-scissors
Modeling revisited	15 4/18- 4/22	An economic interpretation of LP duality Introduction to networks and the shortest path problem Modeling with the shortest path problem	9.6 2.9 2.9	cars 2.42 rental*
	16 4/25 - 4/29	Modeling with the shortest path problem, cont. Review Review	2.9	2.39
	17 5/2 – 5/3	Review		

^{* =} Formulate a model on paper and write accompanying GMPL code. † = Formulate a model using symbolic input parameters.