Lesson 9. Multiperiod Models

Example 1. Priceler manufactures sedans and wagons. The demand for each type of vehicle in the next three months is:

	Sedans	Wagons
Month 1	1100	600
Month 2	1500	700
Month 3	1200	500

Assume that the demand for both vehicles must be met exactly each month. Each sedan costs \$2000 to produce, and each wagon costs \$1500 to produce. Vehicles not sold in a given month can be held in inventory. To hold a vehicle in inventory from one month to the next costs \$150 per sedan and \$200 per wagon. During each month, at most 1500 vehicles can be produced. At the beginning of month 1, 200 sedans and 100 wagons are available. Formulate a linear program that can be used to minimize Priceler's costs during the next three months.

• First, let's write a linear program without sets and parameters, so we can understand the problem better.

• Now, let's write a parameterized linear program.

Sets. V = set of vehicle types = {s, w}
T = set of months = {1, 2, 3}
Parameters. Pi = unit production cost for vehicle i for ieV
hi = unit holding ust for vehicle i for ieV
digt = demand for vehicle i in month t for ieV and teT
Ii = initial inventory for vehicle i for ieV, teT
Yout = # vehicle i to produce in month t for ieV, teT
Yout = # vehicle i to produce in month t for ieV, teT
US.
$$x_{i,t} = # vehicle i to hold at the end of month t for ieV, teT
US. $x_{i,t} = = x_{i,t} + \sum_{i \in V} h_i \sum_{t \in T} y_{i,t}$ (total cost)
min $\sum_{i \in V} P_i \sum_{t \in T} x_{i,t} + \sum_{i \in V} h_i \sum_{t \in T} y_{i,t}$ (total cost)
s.t. $\sum_{i \in V} x_{i,t} \leq 1500$ for teT (monthly prod. capacity)
 $y_{i,0} = I_i$ for ieV (initial inventory)
 $y_{i,t-1} + x_{i,t} = d_{i,t} + y_{i,t}$ for ieV , teT (balance)
 $x_{i,t} \ge 0$ for ieV , teT
 $y_{i,t} \in Z$ for ieV , teT
 $y_{i,t} \in Z$ for ieV , teT (balance)$$

Example 2. During the next three months, the Bellman Company must meet the following demands for their line of advanced GPS navigation systems:

It takes 1 hour of labor to produce 1 GPS system. During each of the next three months, the following number of regular-time labor hours are available:

Each month, the company can require workers to put in up to 500 hours of overtime. Workers are only paid for the hours they work. A worker receives \$10 per hour for regular-time work and \$15 per hour for overtime work. GPS systems produced in a given month can be used to meet demand in that month, or put into a warehouse. Holding a GPS system in the warehouse from one month to the next costs \$2 per GPS system. Formulate a linear program that minimizes the total cost incurred in meeting the demands of the next three months.

Sets:
$$T = \text{set of months} = \{1, 2, 3\}$$

Params: $dt = demand in month t for teT
 $c = \text{unit cost for a GPS node "/ regular labor = 10}$
 $b = \text{unit cost for a GPS made "/ overtime labor = 15}$
 $h = \text{unit holding cost per GPS = 2}$
 $r_E = \# GPS$ that can be made "/ overtime labor in month t for teT
 $v = \# GPS$ that can be made "/ overtime labor in each month = 500
DVs: $z_t = \# GPS$ produced by regular-time labor in month t for teT
 $y_t = \# GPS$ produced by regular-time labor in month t for teT
 $y_t = \# GPS$ produced by overtime labor in month t for teT
 $z_t = \# GPS$ held from month $t \rightarrow tt1$ for teT
 $z_t = \# GPS$ held from month $t \rightarrow tt1$ for teT
 $z_t = \# GPS$ held from teT
 $z_t = t for teT$ (overtime capacity)
 $z_t \leq r_t$ for teT (overtime capacity)
 $z_{t-1} + z_t + y_t = d_t + z_t$ for teT (balance)
 $z_0 = 0$ (initial inventry)
 $z_t \geq 0$, $y_t \geq 0$ for teT
 $z_t \geq 0$, $y_t \geq 0$ for teT
 $z_t \geq 0$, $y_t \geq 0$ for teT
 $z_t = 30$$