
SA��� Linear Programming Spring ���� Uhan

Lesson ��. Introduction to AlgorithmDesign

� What is an algorithm?

● An algorithm is a sequence of computational steps that takes a set of values as input and produces a set of values
as output

● For example:

○ input = a linear program
○ output = an optimal solution to the LP, or a statement that LP is infeasible or unbounded

● Types of algorithms for optimization models:

○ Exact algorithms �nd an optimal solution to the problem, no matter how long it takes
○ Heuristic algorithms attempt to �nd a near-optimal solution quickly

● Why is algorithm design important?

� �e knapsack problem

● You are a thief deciding which preciousmetals to steal from a vault:

Metal Weight (kg) Total Value

� Gold �� ���
� Silver �� ���
� Bronze �� ���
� Platinum � ��

● You have a knapsack that can hold atmost �� kg

● Assume you can take some or all of each metal

● Which items should you take to maximize the value of your the�?

● A linear program:
xi = fraction ofmetal i taken for i ∈ {�, �, �, �}

max ���x� + ���x� + ���x� + ��x�
s.t. ��x� + ��x� + ��x� + �x� ≤ ��

� ≤ xi ≤ � for i ∈ {�, �, �, �}
● Try to come up with the best possible feasible solution you can

● What was yourmethodology?

�



� Some possible algorithms for the knapsack problem

�.� Enumeration

● Naïve idea: just list all the possible solutions, pick the best one

● One problem: since the decision variables are continuous, there are an in�nite number of feasible solutions!

● Suppose we restrict our attention to feasible solutions where xi ∈ {�, �} for i ∈ {�, �, �, �}
● Howmany di�erent possible feasible solutions are there?

○ For � variables, there are atmost �-� feasible solutions

○ For n variables, there are atmost �-� feasible solutions

● �e number of possible �-� solutions grows very, very fast:

n � �� �� �� �� ��
�n �� ���� ��,��� �,���,��� ��,���,��� �,���,���,���,���,���

● Even if you could evaluate ��� ≈ � billion solutions per second (check feasibility and compute objective value),
evaluating all solutions when n = �� would takemore than �� days!

● �is enumeration approach is impractical for even relatively small problems

�.� Best bang for the buck

● Idea: Be greedy and take themetals with the best “bang for the buck”: best value-to-weight ratio

● For this particular instance of the knapsack problem:

Metal Weight (kg) Total Value Value-to-weight ratio
� Gold �� ���

� Silver �� ���

� Bronze �� ���

� Platinum � ��

● Optimal solution and value:

�



● �is “greedy algorithm” turns out to be an exact algorithm for the knapsack problem

● Some issues:

○ How do we know this algorithm always �nds an optimal solution?
○ Can this be extended to LPs with more constraints?

� What should we ask when designing algorithms?

�. Is there an optimal solution? Is there even a feasible solution?

● e.g. an LP can be unbounded or infeasible – can we detect this quickly?

�. If there is an optimal solution, how dowe know if the current solution is one? Canwe characterizemathematically
what an optimal solution looks like, i.e., can we identify optimality conditions?

�. If we are not at an optimal solution, how can we get to a feasible solution better than our current one?

● �is is the fundamental question in algorithm design, and o�en tied to the characteristics of an optimal
solution

�. How do we start an algorithm? At what solution should we begin?

● Starting at a feasible solution usuallymakes sense – can we even �nd one quickly?

�


