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Lesson 13. Improving Search: Finding Better Solutions

1 A general optimization model

e For now, we will consider a general optimization model

e Decision variables: xj, ..., x,

o Recall: a feasible solution to an optimization model is a choice of values for all decision variables that

satisfies all constraints v

Let f(x) and g;(x) fori e {L,...

Let b; for i € {1,..., m} be constant scalars

minimize/maximize f(x)

subjectto  gi(x)

e Linear programs fit into this framework
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Easier to refer to a feasible solution as a vector: x = (xy, ..
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, m} be multivariable functions in x, not necessarily linear

b; forie{l,...,m}




2 Improving search algorithms, informally

e Idea:

o Start at a feasible solution

o Repeatedly move to a “close” feasible solution with better objective function value
¢ The neighborhood of a feasible solution is the set of all feasible solutions “close” to it
o We can define “close” in various ways to design different types of algorithms

o Let’s start formalizing these ideas

3 Locally and globally optimal solutions

e ¢-neighborhood N, (x) of a solution x = (xi,...,x,) € R"” (where € > 0): £

®
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Ne(x) ={yeR":d(x,y) < ¢}

where d(x,y) is the distance between solution x and y

A feasible solution x to optimization model () is locally optimal if for some value of ¢ > 0:

f(x) isbetter than f(y) for all feasible solutions y € N, (x)

A feasible solution x to optimization model (*) is globally optimal if:

f(x) isbetter than f(y) for all feasible solutions y

o Also known simply as an optimal solution MX)

Global optimal solutions are locally optimal, but not vice versa — —

In general: harder to check for global optimality, easier to check for local optimality

4 The improving search algorithm

1: Find an initial feasible solution x° Lk 2b 9] o mpravin
2: Setk=0 X = x4 * feorlle
3. while x* is not locally optimal do /

4 Determine a new feasible solution x**! that improves the objective value at x*

5 Setk=k+1

6: end while

o Generates sequence of feasible solutions X0, x!, x2%, ...

e In general, improving search converges to a local optimal solution, not a global optimal solution

e Let’s concentrate on line 4 - finding better feasible solutions



5 Moving between solutions
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e In Example I:
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mproving directions a, (s,
e We want to choose d so that x**! has a better value than x*

Y

'-i = dl L 1 + a-b \37.
e d is an improving direction at solution x* if 20 = ab, + aby
f(x*+1Ad) isbetter than f(x*)

for all positive A “close” to 0
e How do we find an improving direction?

o The directional derivative of f in the direction d at solution x is
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e Maximizing f: d is an improving direction at x* if V:F G & >0
e Minimizing f: d is an improving direction at x* if
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e For linear programs in general: if d is an improving direction at x*, then f(x* + 1d) improves as 1 — oo
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Step size

e We have an improving direction d - now how far do we go?

e One idea: find maximum value of A so that x* + Ad is still feasible
e Graphically, we can eyeball this

e Algebraically, we can compute this — in Example I:
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Feasible directions

e Some improving directions don’t lead to any new feasible solutions

e dis a feasible direction at feasible solution x* if x* + Ad is feasible for all positive A “close” to 0
e Again, graphically, we can eyeball this

e A constraint is active at feasible solution x if it is satisfied with equality



e For linear programs:

o We have constraints of the form:
Mmx1+axxy+--+apx, <b
x|+ AsXy + -+ apx, 2 b
MxX1+axXy+- -+ apx, =b

o We can rewrite these constraints using vector notation:
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e impave ,,La . volue mf\m(-d%.

9 Detecting unboundedness
e Suppose d is an improving direction at feasible solution x* to a linear program
e Also, suppose x* + Ad is feasible for all A > 0

e What can you conclude?
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10 Summary

e Line 4 boils down to finding an improving and feasible direction d and an accompanying step size A
e We discussed conditions on whether a direction is improving and feasible

e We don’t know how to systematically find such directions... yet



