SA305 - Linear Programming Spring 2021

Lesson 15. Geometry and Algebra of “Corner Points”

0 Warmup
Example 1. Consider the system of equations
3x1+x, —7x3=17

X1 +5x; = 1
—2x1 + 1lx3 = -24

31 =7
LetA=| 1 5 0 |. Wehave that det(A) = 84.
-2 0 1

e Does (*) have a unique solution, no solutions, or an infinite number of solutions?

UW\“S"*'- Smlukm, LLLMK cle.‘{(A)-#o

o Are the row vectors of A linearly independent? How about the column vectors of A?

- Uhan

Y&s) e oow amd olumn vechrs of A ore LI, becomse detCAY#0

e What is the rank of A? Does A have full row rank?

wmk(/*)=3) becanse det(M#0 = A hes Ll nw vank.

1 Overview

X2
e Due to convexity, local optimal solutions of LPs are global optimal N T
solutions FFUSF NSRS SRS SO S
= Improving search finds global optimal solutions of LPs 4 | ------- -------
e The simplex method: improving search among “corner points” of the 3 """ """ ®\
feasible region of an LP 2 [ : @/
e How can we describe “corner points” of the feasible region of an LP? 1 | BRI ------
e For LPs, is there always an optimal solution that is a “corner point”™? 1 2 3 ’ X1




2 Polyhedra and extreme points
o A polyhedron is a set of vectors x that satisty a finite collection of linear constraints (equalities and inequalities)
o Also referred to as a polyhedral set

e In particular:
(P‘,lz‘nejﬁm (=) L@&S«‘Lale rea'}‘m op‘ LP

e Recall: the feasible region of an LP - a polyhedron - is a convex feasible region

e Given a convex feasible region S, a solution x € § is an extreme point if there does not exist two distinct solutions
Y,z € S such that x is on the line segment joining y and z

o i.e. there does not exist A € (0,1) such thatx = Ay + (1- 1)z

Example 2. Consider the polyhedron S and its graph below. What are the extreme points of S?

x1+3x,<15 (1)

X1 +x3<7 (2)

S={x=(x,x)eR*: 2x+x,<12 (3)
x1 20 (4)

X220 (5)

e “Corner points” of the feasible region of an LP < extreme points

3 Basic solutions

e In Example 2, the polyhedron is described with 2 decision variables

e Each corner point / extreme point is He intercechion OP d lines
/? omstraint 1s sahshed "‘/L%ML‘
e Equivalently, each corner point / extreme pointis  achve ot 2 J,,'sknc-l mslrm‘v\l'j
e [s there a connection between the number of decision variables and the number of active constraints at a corner
point / extreme point?

e Convention: all variables are on the LHS of constraints, all constants are on the RHS

e A collection of constraints defining a polyhedron are linearly independent if the LHS coefficient matrix of these
constraints has full row rank



Example 3. Consider the polyhedron S given in Example 2. Are constraints (1) and (3) linearly independent?

LHS  coelfhciemt wmabnx of N+ L= ( | 3> x+3x6<15 (1)
N X1 +Xxy <7 (2)

2x1+x, <12 (3)

Ad’(l—) = l-6=-S+0 = L has {—ll\ W f‘ovr\k 050 "
x>0 (5)

> (N+(3) «e LI

e Given a polyhedron S with n decision variables, x is a basic solution if

(a) it satisfies all equality constraints
(b) atleast n constraints are active at x and are linearly independent

e x is a basic feasible solution (BFS) if it is a basic solution and satisfies all constraints of S

Example 4. Consider the polyhedron S given in Example 2. Verify that (3,4) and (21/5,18/5) are basic solutions.

Are these also basic feasible solutions? h= 2 = #decitin variables
»r
(3."\) : CA) S has no L%U\‘vl“'; Mslvma‘nh = MLM&ku“; g.,ksﬁ‘u‘,. x1+3x; <15 1)
(b) Whick comsheainks are ackve ab (3,472 X1+ x<7 (2)
2x1+ x5 <12 3
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) 3>0 X = ( o
(s): 430 X

3 (L) sahshed
) (3,‘-[) is o bawe Solwhon
(3.4) olso sahshes all comshmaints = (3,4) s « BFS.
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x1+3x,<15 (1)

X1+x2<7 (2)

Example 5. Consider the polyhedron S given in Example 2. 2%+ x, <12 (3)
a. Compute the basic solution x active at constraints (3) and (5). Is x a BFS? Why? x20 (4)

b. In words, how would you find all the basic feasible solutions of S? x>0 (5)

a. 2)(. + X]_ = '7' } Q Y= (6 ) “s B%P\’C ;.ly\ avd‘y‘_ ;Z Sﬁ-l'\sc\e-‘ 0»“ WV\SJ‘NIA‘VA’S
X, = 0 o at (3)+(5) S X is « BFS.

b Comwler ol ollehms of n2d LT conshominbs.
Solve  for the wv‘resrmakwg bawe slubm, chedk i feanble

4 Equivalence of extreme points and basic feasible solutions

e From our examples, it appears that for polyhedra, extreme points are the same as basic feasible solutions

& Big Theorem 1. Suppose S is a polyhedron. Then x is an extreme point of S if and only if x is a basic feasible solution.

e See Rader p. 243 for a proof

e We use “extreme point” and “basic feasible solution” interchangeably

5 Adjacency

e An edge of a polyhedron S with n decision variables is the set of solutions in S that are active at (n — 1) linearly
independent constraints

x1+3x, <15 (l)

Example 6. Consider the polyhedron S given in Example 2. x+x<7 o (2)
2x) +x, <12 3)

a. How many linearly independent constraints need to be active for an edge of this polyhedron? w0 (4)

b. Describe the edge associated with constraint (2). x>0  (5)

a. n=2 D n-| = | DVV‘SI'Y‘M'W" ruds b Lo, abkvg_
b all golukems w S Huod sahsﬁ} X, +x,= T
:‘) ll'U\L sgaw\un{' WMJ\A% e,\(L’fMu. r"? (3’"“3 V’J [S',?.)

e Edges appear to connect “neighboring” extreme points

e Two extreme points of a polyhedron S with n decision variables are adjacent if there are (n —1) common linearly
independent constraints at active both extreme points

o Equivalently, two extreme points are adjacent if the line segment joining them is an edge of S



X1+ 3%, <15 1

. . . X+ x<7 (2)

Example 7. Consider the polyhedron S given in Example 2. armslz (3)
a. Verify that (3,4) and (5, 2) are adjacent extreme points. x1>0 (4)

b. Verify that (0,5) and (6,0) are not adjacent extreme points. X220 (5)

o (31"‘> TS MkVL k{— CI)+(2)§ £5) (5,“\) and (s,?_) are a,J-\‘vg, a,t v\—\:l
(5,2) is ackve oF (D+(3) wmman LT conshaint

=2 (34) and (5,2) wre 4{“'“‘”‘1—'

b. (D|5> s achve of (l)*’(’-}) > (ong) mmd ((0103 are NOT achve ot p—\:\
(0,0) is achve ot (3)+(5) Comman LT comshrnint

> (05) wnk (6,0) ere NoT edjocsl

e We can move between adjacent extreme points by “swapping” active linearly independent constraints

6 Extreme points are good enough: the fundamental theorem of linear programming

Big Theorem 2. Let S be a polyhedron with at least 1 extreme point. Consider the LP that maximizes a linear function
c"x over x € S. Then this LP is unbounded, or attains its optimal value at some extreme point of S.

“Proof” by picture.

o Assume the LP has finite optimal value

e The optimal value must be attained at the boundary of the polyhedron, otherwise:
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= The optimal value is attained at an extreme point or “in the middle of a boundary”



e If the optimal value is attained “in the middle of a boundary”, there must be multiple optimal solutions, including
an extreme point:
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> X1 > X1
= The optimal value is always attained at an extreme point O]

For LPs, we only need to consider extreme points as potential optimal solutions

It is still possible for an optimal solution to an LP to not be an extreme point

If this is the case, there must be another optimal solution that is an extreme point

Food for thought
e Does a polyhedron always have an extreme point?
e We need to be a little careful with these conclusions — what if the Big Theorem doesn’t apply?

e Next time: we will learn how to convert any LP into an equivalent LP that has at least 1 extreme point, so we
don’t have to be (so) careful



