SA305 - Linear Programming Spring 2021 - Uhan

Lesson 19. Degeneracy, Convergence, Multiple Optimal Solutions

0 Warmup

Example 1. Suppose we are using the simplex method to solve the following canonical form LP:

maximize 10x + 3y
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Letx = (x, ¥, 51, 52, 53). Our current BFS is x' = (0, 4,0, 3,0) with basis B’ = {y, s1, s, }. The simplex directions are

d* = (1,0,-1,-5,0) and d* = (0,-1,1,2,1). Compute x'*! and B'*!,
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In the above example, the step size Ay = 0

As aresult, x'*! = x: it looks like our solution didn’t change!

The basis did change, however: B'*! = B!

Why did this happen?
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e A BFS x of an LP with n decision variables is degenerate if there are more than # constraints active at x

1 Degeneracy

o i.e. there are multiple collections of # linearly independent constraints that define the same x

Example 2. Is x’ in Example 1 degenerate? Why?
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e Inx'=(0,4,0,3,0) in Example 1, “too many” of the nonnegativity constraints are active

o Asaresult, some of the basic variables are equal to zero

e Recall: a BES of a canonical form LP with # decision variables and m equality constraints has

o m basic variables, potentially zero or nonzero
A X = L ] m
o n—-m nonbasic variables, always equal to 0 X220 ] n
e Suppose x is a degenerate BES, with n + k active constraints (k > 1)
e Then i+ k-m nonnegativity bounds must be active, which is larger than n — m

e Therefore: a BFS x of a canonical form LP is degenerate if
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e Asaresult, a degenerate BFS may correspond to several bases

o e.g. in Example 1, the BFS (0, 4,0, 3,0) has bases: { J 5, S, } ) { .y, S, j

e Every step of the simplex method

o does not necessarily move to a geometrically adjacent extreme point

o does move to an adjacent BES (in particular, the bases differ by exactly 1 variable)
e At a degenerate BFS, the simplex method might “get stuck” for a few steps

o Same BFS, different bases, different simplex directions

o Zero-length moves: Ay =0
e When A« = 0, just proceed as usual

e Simplex computations will normally escape a sequence of zero-length moves and move away from the current
BES



Convergence

e In extreme cases, degeneracy can cause the simplex method to cycle over a set of bases that all represent the
same extreme point

o See Rader p. 291 for an example
e Can we guarantee that the simplex method terminates?
e Yes! Anticycling rules exist
e Easy anticycling rule: Bland’s rule

o Fix an ordering of the decision variables and rename them so that they have a common index

o eg. (x,y, 51,52,53) - (xl,xz,xs,x4,x5)
o Entering variable: choose nonbasic variable with smallest index among those corresponding to improving
simplex directions

o Leaving variable: choose basic variable with smallest index among those that define A«



3 Multiple optimal solutions
e Suppose our current BFS is x', and y is the entering variable

e The change in objective function value from x' to x* + Ad” (A > 0) is
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= We can use reduced costs to compute changes in objective function

e Suppose we solve a canonical form maximization LP with decision variables x = (x1, X2, X3, x4, X5) using the
simplex method, and end up with:

x' = (0,150, 0,200, 50) B' = {x3, x4, x5}
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e Is x' optimal?
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e Are there multiple optimal solutions?

o Because the reduced cost ¢y, =0,
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o Let’s explore using x; as an entering variable:
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e In general, if there is a reduced cost equal to 0 at an optimal solution, there may be other optimal solutions

o The zero reduced cost must correspond to a simplex direction with Ay > 0



