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Lesson ��. Bounds and the Dual LP

� Overview

● It is o�en useful to quickly generate lower and upper bounds on the optimal value of an LP

● Many algorithms for optimization problems that consider LP “subproblems” rely on this

● How can we do this?

� Finding lower bounds

Example �. Consider the following LP:

z∗ =maximize �x� + �x� + �x�
subject to �x� + �x� + �x� ≤ �� (�)

�x� + �x� + �x� ≤ �� (�)
x�, x�, x� ≥ � (�)

Denote the optimal value of this LP by z∗. Give a feasible solution to this LP and its value. How does this value compare
to z∗?

Feasible Solution Value

● For amaximization LP, any feasible solution gives a lower bound on the optimal value

● We want the highest lower bound possible (i.e. the lower bound closest to the optimal value)
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� Finding upper bounds

● We want the lowest upper bound possible (i.e. the upper bound closest to the optimal value)

● For the LP in Example �, we can show that the optimal value z∗ is atmost ��

○ Any feasible solution (x�, x�, x�)must satisfy constraint (�)
⇒ Any feasible solution (x�, x�, x�)must also satisfy constraint (�) multiplied by ��� on both sides:

○ �e nonnegativity bounds (�) imply that any feasible solution (x�, x�, x�)must satisfy

○ �erefore, any feasible solution, including the optimal solution,must have value atmost ��

● We can do better: we can show z∗ ≤ ��:
○ Any feasible solution (x�, x�, x�)must satisfy constraints (�) and (�)

⇒ Any feasible solution (x�, x�, x�)must also satisfy � �
�
× constraint (�)� + constraint (�):

○ �e nonnegativity bounds (�) then imply that any feasible solution (x�, x�, x�)must satisfy

Example �. Combine the constraints (�) and (�) of the LP in Example � to �nd a better upper bound on z∗ than ��.
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● Let’s generalize this process of combining constraints

● Let y� be the “multiplier” for constraint (�), and let y� be the “multiplier” for constraint (�)

● We require y� ≥ � and y� ≥ � so thatmultiplying constraints (�) and (�) by these values keeps the inequalities as
“≤”
● We also want:

● Since we want the lowest upper bound, we want:

● Putting this all together, we can �nd themultipliers that �nd the best lower upper bound with the following LP!

minimize ��y� + ��y�
subject to �y� + �y� ≥ �

�y� + �y� ≥ �
�y� + �y� ≥ �
y� ≥ �, y� ≥ �

○ �is is the dual LP, or simply the dual of the LP in Example �
○ �e LP in example is referred to as the primal LP or the primal – the original LP

� In general...

● Every LP has a dual

● Forminimization LPs

○ Any feasible solution gives an upper bound on the optimal value
○ One can construct a dual LP to give the greatest lower bound possible

● We can generalize the process we just went through to develop somemechanical rules to construct duals
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� Constructing the dual LP

�. Rewrite the primal so all variables are on the LHS and all constants are on the RHS

�. Assign each primal constraint a corresponding dual variable (multiplier)

�. Write the dual objective function

● �e objective function coe�cient of a dual variable is the RHS coe�cient of its corresponding primal
constraint
● �e dual objective sense is the opposite of the primal objective sense

�. Write the dual constraint corresponding to each primal variable

● �e dual constraint LHS is found by looking at the coe�cients of the corresponding primal variable (“go
down the column”)
● �e dual constraint RHS is the objective function coe�cient of the corresponding primal variable

�. Use the SOB rule to determine dual variable bounds (≥ �, ≤ �, free) and dual constraint comparisons (≤, ≥, =)
max LP ↔ min LP

sensible ≤ constraint ↔ yi ≥ � sensible
odd = constraint ↔ yi free odd

bizarre ≥ constraint ↔ yi ≤ � bizarre

sensible xi ≥ � ↔ ≥ constraint sensible
odd xi free ↔ = constraint odd

bizarre xi ≤ � ↔ ≤ constraint bizarre

Example �. Take the dual of the following LP:

minimize ��x� + �x� − �x�
subject to �x� − x� ≥ �

�x� + �x� − x� ≤ ��
x� + x� = �

x� ≥ �, x� ≤ �, x� ≥ �
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Example �. Take the dual of the dual LP you found in Example �.

● In general, the dual of the dual is the primal

� Up next...

● Duality theorems: relationships between the primal and dual LPs
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