SA305 - Linear Programming

Spring 2021 - Uhan

Lesson 22. An Economic Interpretation of LP Duality

1 Overview

e An economic interpretation of duality

e Complementary slackness

2 Warm up

Example 1. The Fulkerson Furniture Company produces desks, tables, and chairs. Each type of furniture requires a
certain amount of lumber, finishing, and carpentry:

Resource Desk Table Chair | Available
Lumber (sq ft) 8 6 2 48
Finishing (hrs) 3 2 1 20
Carpentry (hrs) 2 2 1 8
Profit ($) 60 30 20

Assume that all furniture produced is sold, and that fractional solutions are acceptable. Write a linear program to
determine how much furniture Fulkerson should produce in order to maximize its profits.
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3 Economic interpretation of the dual LP
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e Suppose an entrepreneur wants to purchase all of Fulkerson’s resources (lumber, finishing, carpentry)

e What prices should she offer for the resources that will entice Fulkerson to sell?



Define decision variables:

y1 = price of 1 sq. ft. lumber

y, = price of 1 hour of finishing Resource Desk Table Chair | Available
. Lumber (sq ft) 8 6 2 48
y3 = price of L hour of carpentry  pipihing (hrs) | 3 2 1 20
Carpentry (hrs) 2 2 1 8
Profit ($) 60 30 20

To buy all of Fulkerson’s resources, entrepreneur pays:
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Entrepreneur wants to minimize this cost

Entrepreneur also needs to offer resource prices that will entice Fulkerson to sell

One desk uses

o 8sq. ft. of lumber
o 3 hours of finishing

o 2 hours of carpentry
One desk has profit of $60

Entrepreneur should pay at least $60 for this combination of resources:
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One table uses

o 6sq. ft. of lumber
o 2 hours of finishing

o 2 hours of carpentry
One table has profit of $30

Entrepreneur should pay at least $30 for this combination of resources:
by, + 29y, + 23; 2 3o

One chair uses

o 2sq. ft. of lumber
o 1hours of finishing

o 1hours of carpentry
One chair has profit of $20

Entrepreneur should pay at least $20 for this combination of resources:
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e Increasing the availability of the resources potentially increases the maximum profits Fulkerson can achieve

= Entrepreneur should pay nonnegative amounts for each resource:
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o Putting this all together, we get:

min 48y, + 20y, + 8y3

st. 8y1+ 3y +2y3>60 (x1: desks)
6y1+ 2y, +2y3>30 (x,: tables)
2y1+  ya+ y3220 (x3: chairs)
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This is the dual of Fulkerson’s LP!

In summary:

o Optimal dual solution <> “fair” prices for associated resources

o Known as marginal prices or shadow prices

Strong duality =

Company’s maximum revenue | ( Entrepreneur’s minimum cost
from selling furniture of purchasing resources

o Equilibrium under perfect competition: company makes no excess profits

This kind of economic interpretation is trickier for LPs with different types of constraints and variable bounds

Complementary slackness
e Optimal solution to Fulkersons LP: x; =4, x, =0, x3=0

e Resources used:
lumber: 32 < 48 finishing: 12 < 20 carpentry: 8 = 8

How much would you pay for an extra sq. ft. of lumber? Yo = 0

How much would you pay for an extra hour of finishing? ¥.= 0

e Resource not fully utilized in optimal solution

= marginal price = 0

Primal complementary slackness: either

o a primal constraint is active at a primal optimal solution, or

o the corresponding dual variable at optimality = 0



e Same logic applies to the dual
o Dual constraints < Primal decision variables
¢ Dual complementary slackness: either

o a primal decision variable at optimality = 0, or
o the corresponding dual constraint is active in a dual optimal solution
5 More duality practice
Example 2. Consider the following LP:
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