Summary of Models

The shortest path problem

- Data:
 - Directed graph (N, E)
 - Source node $s \in N$ and target node $t \in N$ ($s \neq t$)
 - Each edge (i, j) in *E* has a **length** c_{ij}
- The length of a path is the sum of the lengths of the edges in the path
- Problem: Find a path from *s* to *t* with the shortest length

Dynamic program - shortest/longest path representation

- **Stages** *t* = 1, 2, ..., *T* and **states** *n* = 0, 1, 2, ..., *N*
- Directed graph:

- Node $t_n \leftrightarrow$ being in state *n* at stage *t*
 - Nodes for the *t*th stage are put in the *t*th column
- Edge $(t_n, (t+1)_m) \leftrightarrow$ the **decision** to go to state *m* from state *n* at stage *t*
 - ♦ Length of this edge = **contribution** (i.e. cost or reward) of making this decision
 - ♦ An edge must connect a node in the *t*th column to a node in the (t + 1)st column
- All nodes for the last stage are connected to an "end" node
 - ♦ These edges often have a length 0, but not always
- Shortest/longest path problem:
 - Source node = one of the first stage nodes (depends on the problem)
 - Target node = end node

If the contributions (edge lengths) are	Then find the
rewards	longest path from source to target
costs	shortest path from source to target

Dynamic program - recursive representation

- Stages t = 1, 2, ..., T and states n = 0, 1, 2, ..., N
- Allowable **decisions** *x*_{*t*} at stage *t* and state *n*
- **Contribution** (i.e. cost or reward) of decision *x*_t at stage *t* and state *n*
- Value-to-go function $f_t(n)$ at stage *t* and state *n* (i.e. cost-to-go or reward-to-go)
- **Boundary conditions** on $f_T(n)$ at state n
- **Recursion** on $f_t(n)$ at stage *t* and state *n*

for t = 1, ..., T - 1 and n = 0, 1, ..., N

for t = 1, ..., T and n = 0, 1, ..., N

for t = 1, ..., T and n = 0, 1, ..., N

for n = 0, 1, ..., N

for t = 1, ..., T - 1 and n = 0, 1, ..., N

$$f_t(n) = \min_{x_t \text{ allowable}} \operatorname{contribution of}_{decision x_t} + f_{t+1} \begin{pmatrix} \operatorname{new state} \\ \operatorname{resulting} \\ \operatorname{from } x_t \end{pmatrix}$$

• **Desired value-to-go function value**, usually $f_1(m)$ for some state m

Dynamic program - correspondence between shortest/longest path and recursive representations

Shortest/longest path		Recursive
node t_n	\leftrightarrow	state <i>n</i> at stage <i>t</i>
$edge(t_n,(t+1)_m)$	\leftrightarrow	allowable decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of edge $(t_n, (t+1)_m)$	\leftrightarrow	contribution (i.e. cost or reward) of decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of shortest/longest path from node t_n to end node	\leftrightarrow	value-to-go function $f_t(n)$ (i.e. cost-to-go or reward-to-go)
length of edges (T_n, end)	\leftrightarrow	boundary conditions $f_T(n)$
shortest or longest path	\leftrightarrow	recursion is min or max:
		$f_t(n) = \min_{x_t \text{ allowable}} \operatorname{ext}\left\{ \left(\begin{array}{c} \operatorname{contribution of} \\ \operatorname{decision} x_t \end{array} \right) + f_{t+1} \left(\begin{array}{c} \operatorname{new state} \\ \operatorname{resulting} \\ \operatorname{from} x_t \end{array} \right) \right\}$
source node 1_n	\leftrightarrow	desired value-to-go function value $f_1(n)$

Stochastic dynamic program

- **Stages** *t* = 1, 2, ..., *T* and **states** *n* = 0, 1, 2, ..., *N*
- Allowable **decisions** *x*_{*t*} at each stage *t* and state *n*
- Transition probability $p(m | n, t, x_t)$ of moving from state *n* to state *m* in stage *t* under decision x_t
- Contribution $c(m | n, t, x_t)$ for moving from state *n* to state *m* in stage *t* under decision x_t

- Value-to-go function $f_t(n)$ at each stage *t* and state *n*
- **Boundary conditions** on $f_T(n)$ for each state n
- **Recursion** on $f_t(n)$ at stage *t* and state *n*

$$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \sum_{m=0}^N p(m \mid n, t, x_t) \Big[c(m \mid n, t, x_t) + f_{t+1}(m) \Big] \right\}$$
for $t = 1, 2, ..., T - 1$ and $n = 0, 1, ..., N$

• **Desired value-to-go**, usually $f_1(m)$ for some state *m*