SA367 - Mathematical Models for Decision Making Spring 2020 - Uhan

Lesson 11. Formulating Dynamic Programming Recursions

1 Formulating DP recursions
o Last lesson: recursions for shortest path problems
e Dynamic programs are not usually given as shortest/longest path problems
o However, it is usually easier to think about DPs this way
e Instead, the standard way to describe a dynamic program is a recursion

o Let’s revisit the knapsack problem that we studied back in Lesson 5 and formulate it as a DP recursion

Example 1. You are a thief deciding which precious metals to steal from a vault:

Metal Weight (kg) Value

1 Gold 3 11
2 Silver 2 7
3 Platinum 4 12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which
items should you take to maximize the value of your theft?

o We formulated the following dynamic program for this problem by giving the following longest path representa-

tion:
source
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stage 2 stage 3 stage 4
take gold? take silver? take platinum? end

o Lets formulate this as a dynamic program, but now by giving its recursion representation
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e In general, to formulate a DP with its recursive representation:

Dynamic program - recursive representation

o Stagest=1,2,..., T and statesn =0,1,2,...,N
o Allowable decisions x; at stage ¢ and state n (t=1,...,T-1;n=0,1,...,N)
o Cost/reward of decision x; at stage t and state n (t=1,...,T;n=0,1,...,N)
e Cost/reward-to-go function f;(n) at stage t and staten  (t=1,...,T; n=0,1,...,N)
¢ Boundary conditions on fr(n) at state n (n=0,1,...,N)
e Recursion on f;(n) at stage t and state n (t=1,...,T-5,n=0,1,...,N)
ft(n) = min or max {( cost/r.efxvard of ) + le( I;:::’ﬂﬁiig )}
x¢ allowable decision x; e

e Desired cost-to-go function value

e How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path Recursive

node t, < state n at stage ¢

edge (ty, (t+1)m) < allowable decision x; in state n at stage ¢ that results in
being in state m at stage ¢ + 1

length of edge (t,,, (t +1) ) < cost/reward of decision x; in state n at stage ¢ that results
in being in state m at stage t + 1

length of shortest/longest path from < cost/reward-to-go function f;(n)

node t, to end node
length of edges (T}, end) < boundary conditions fr(n)
shortest or longest path <> recursion is min or max:

source node 1, >

. cost/reward of new state
fi(n) = min or max .. +f+1| resulting
x; allowable decision Xt from X

desired cost-to-go function value f(n)




Solving DP recursions

e To improve our understanding of how this recursive representation works, let’s solve the DP we just wrote for
the knapsack problem

e We solve the DP backwards:

o start with the boundary conditions in stage T
o compute values of the cost-to-go function f;(n) in stages T -1, T - 2,...,3,2

o ...until we reach the desired cost-to-go function value

e Stage 4 computations — boundary conditions:
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e Stage 3 computations:
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e Stage 2 computations:
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e Stage 1 computations — desired cost-to-go function:
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e Maximum value of theft: CF: ( g) = 23

e Metals to take to achieve this maximum value:
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Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The
company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company
produces the beer requires a factory setup cost of $5,000. Each batch of beer costs $2,000 to produce. Batches can be
held in inventory at a cost of $1,000 per batch per month. Capacity limitations allow a maximum of 3 batches to be
produced during each month. In addition, the size of the company’s warehouse restricts the ending inventory for each
month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production
and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive
representation. Solve the dynamic program.

Formulating the DP

e Recall that in Lesson 9, we formulated this problem as a dynamic program with the following shortest path
representation:

o Stage t represents the beginning of month ¢ (t = 1,2, 3) or the end of the decision-making process (¢ = 4).
o Node t, represents having n batches in inventory at stage t (n = 0,1,2, 3).

source

Stage 1 Stage 2

Month Production amount Edge Edge length
1 0 (14, 24-1) forn=1,2,3 I(n-1)
1 1 (15> 2,) forn=0,1,2,3,4 5+2(1)+1(n)
1 3 (13, 20s2)  forn=0,1 5+2(3) +1(n+2)
2 0 (21,30-2) forn=2,3 1I(n-2)
2 1 (21,30-1) forn=1,2,3 5+2(1)+1(n-1)
2 3 (21,3041) forn=0,1,2 5+2(3)+1(n+1)
3 0 not possible
3 1 (31,44-3) forn=3 5+2(1) +1(n-3)
3 3 (31,44-1) forn=1,2,3 5+42(3)+1(n-1)




e Let d; = number of batches required in month ¢, for t =1,2,3
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e Reward of decision x; at stage ¢ and state n:
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e Recursion:
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e Stage 4 computations — boundary conditions:
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e Stage 3 computations:
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e Stage 1 computations — desired cost-to-go function:
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e Minimum total production and holding cost: ;I( o) = 30

e Production amounts that achieve this minimum value:
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