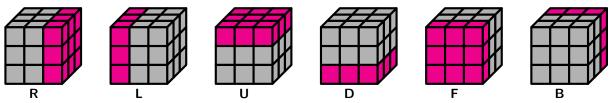
Lesson 7. Big DPs and the Curse of Dimensionality

1 Solving a Rubik's cube

- In a classic Rubik's cube, each of the 6 faces is covered by 9 stickers
- Each sticker can be one of 6 colors: white, red, blue, orange, green and yellow

- Each face of the cube can be turned independently
 - Notation:

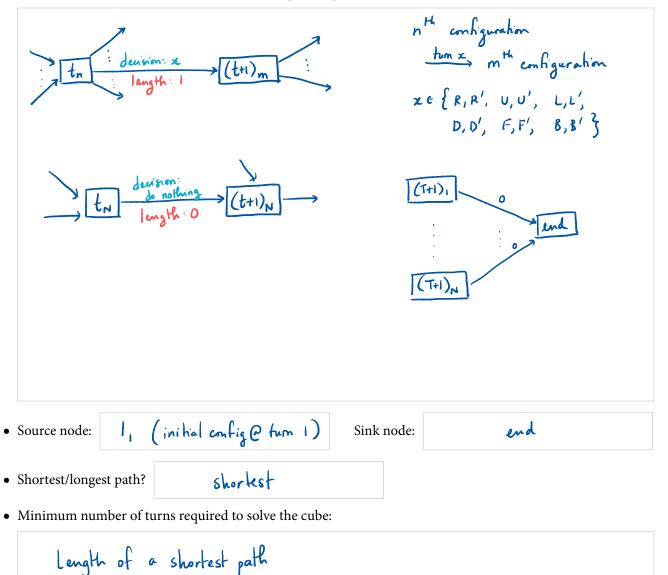


- The letter means turn the face clockwise 90°
 - ♦ For example, **R** means turn the right face clockwise 90°
- The letter primed means turn the face counter-clockwise 90°
 - ♦ For example, **R'** means turn the right face counter-clockwise 90°
- The problem: given an initial configuration of the cube, find a *shortest* sequence of turns so that each face has only one color
 - You may assume that you are allowed at most T turns
 - It turns out that any configuration can be solved in 26 turns or less: http://cube20.org/qtm/
- How can we formulate this problem as a dynamic program?

• Stages:

Stage
$$t \Leftrightarrow t^{th}$$
 turn of the cube $(t = 1, ..., T)$
 \Leftrightarrow end of decision-making process $(t = T+1)$
States in stage t (nodes): Let $1, ..., N$ be a list of all the possible cube embigurations
initial f $the n^{th}$ configuration with turns $t, t+1, ..., T$
Node $tn \Leftrightarrow$ being in the nth configuration with turns $t, t+1, ..., T$
remaining $(n = 1, ..., N)$

• Decisions, transitions, and rewards/costs at stage *t* (edges):

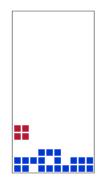


• Actual sequence of turns that give the minimum number of turns to solve the cube:

Edges in the shortest path correspond to which turns to make.

2 Tetris

- You've all played Tetris before, right? Just in case...
- Tetris is a video game in which pieces fall down a 2D playing field, like this:



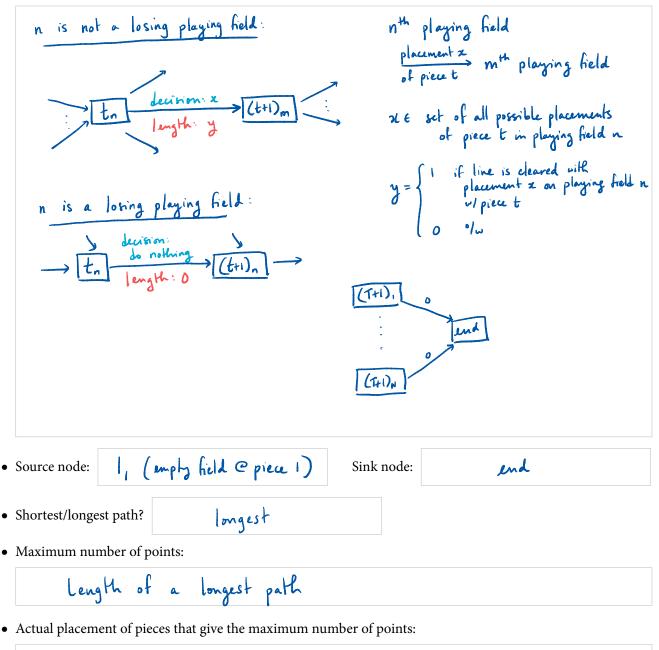
- Each piece is made up of four equally-sized bricks, and the playing field is 10 bricks wide and 20 bricks high
- As the pieces fall, the player can rotate them 90° in either direction, or move them left and right
- When a row is constructed without any holes, the player receives a point and the corresponding row is cleared
- The game is over once the height of bricks exceeds 20
- The problem: given a predetermined sequence of *T* pieces¹, determine how to place each piece in order to maximize the number of points accumulated over the course of the game
- How can we formulate this problem as a dynamic program?

¹Normally, the sequence of falling pieces is random and infinitely long. We'll consider this easier version here.

• Stages:

Stage t
$$\leftrightarrow$$
 playing the tth piece $(t=1,...,T)$
 \leftrightarrow end of the decision-making process $(t=T+1)$
States in stage t (nodes): Let \downarrow ..., N be a list of all the possible playing fields
Node to \leftrightarrow being in the nth playing field with pieces t, t+1, ..., T
remaining $(n=1,...,N)$

• Decisions, transitions, and rewards/costs at stage *t* (edges):



Edges in a longest path converpend to which placements to make

3 Big DPs and the curse of dimensionality

- How big are these DPs we just formulated?
- Tetris:

• Number of states per stage:
$$N = 2^{200} \approx 1.61 \times 10^{60}$$

• Number of stages T
 \Rightarrow Number of nodes: $N(T+1) + 1 \approx (1.61 \times 10^{60})(T+1) + 1$
• Rubik's cube:
• Number of states per stage: $N \approx 4.33 \times 10^{19}$
• Number of stages T
 \Rightarrow Number of nodes: $N(T+1) + 1 \approx (4.33 \times 10^{19})(T+1) + 1$

- \Rightarrow Number of nodes:
- The number of states is huge for both these DPs!
- \Rightarrow The DPs we formulated (as-is) are not solvable using today's computing power
- This is known as the curse of dimensionality in dynamic programming
- Approximate dynamic programming is an active area of research that tries to address the curse of dimensionality in various ways
 - For example, for Tetris: https://papers.nips.cc/paper/5190-approximate-dynamic-programmingfinally-performs-well-in-the-game-of-tetris.pdf