SA367 - Mathematical Models for Decision Making Spring 2021 - Uhan

Lesson 7. Big DPs and the Curse of Dimensionality

1 Solving a Rubik’s cube
e In a classic Rubik’s cube, each of the 6 faces is covered by 9 stickers

e Each sticker can be one of 6 colors: white, red, blue, orange, green and yellow

e Each face of the cube can be turned independently

o Notation:

R L) D
o The letter means turn the face clockwise 90°
o For example, R means turn the right face clockwise 90°
o The letter primed means turn the face counter-clockwise 90°

o For example, R’ means turn the right face counter-clockwise 90°

e The problem: given an initial configuration of the cube, find a shortest sequence of turns so that each face has
only one color

o You may assume that you are allowed at most T turns

o It turns out that any configuration can be solved in 26 turns or less: http://cube20.org/qtm/

e How can we formulate this problem as a dynamic program?

e Stages:
Shage £ s EP him of e whe (t=1, T
— ud op JO,M'HM‘ MA.L'-{A& Pwu,gg (-£=T+03

Let I))N be a |fsl‘ oP all He I)ossﬂ‘ue cube wa‘zum‘-\}ms
l.ﬂl'l'ful J L solved

Node lfn e Lu‘na in He n™ owﬂawlxm with hns {1, kL o T
YQMAMM'\S (n: I, ...)N)

e States in stage ¢ (nodes):

e Decisions, transitions, and rewards/costs at stage ¢ (edges):

H

n Cc\nﬁ u-MI\M
J
™ ’%wb\'m' e / ___)J'um ax i Q wr how
i {n — -(«tﬂ)m : m Cm 3 o~
/"‘ 'l\ : l 5%‘ | E\ 1e {RIRI; U,U’) L,L’)

D>, FF, B35

v

\ JuAmon: ;]’_(TH). I
Ao I\DHN‘ x > —_—

wm

](TH)N \/

Source node: '. i hal mL}@ fum I) Sink node: Mol

Shortest/longest path? shor kst

Minimum number of turns required to solve the cube:

LwﬁH" 0{2 ¢ S\ﬂﬁrl’eSl’ ra"e\

Actual sequence of turns that give the minimum number of turns to solve the cube:

EASe,s wh Hu .S\fmrl-a" ro.H« Wavr)mal— bovbwdd hams ‘w wm‘ie,.

2 Tetris
e You've all played Tetris before, right? Just in case...

e Tetris is a video game in which pieces fall down a 2D playing field, like this:

e Each piece is made up of four equally-sized bricks, and the playing field is 10 bricks wide and 20 bricks high

o As the pieces fall, the player can rotate them 90° in either direction, or move them left and right

e When a row is constructed without any holes, the player receives a point and the corresponding row is cleared
e The game is over once the height of bricks exceeds 20

e The problem: given a predetermined sequence of T pieces', determine how to place each piece in order to
maximize the number of points accumulated over the course of the game

e How can we formulate this problem as a dynamic program?

'Normally, the sequence of falling pieces is random and infinitely long. We'll consider this easier version here.

e Stages:
Shae b e plagmg re 5 pres (1ol 0T
& WL OC Hl\lv JLu‘h'm-W\uL\‘y\ﬁv [’V"U-SS Lt’T“'l)
e States in stage ¢ (nodes): Li; \ S N be o lisk of ol A fash'“e, rlwyn; Q..lis

o hll
No'll {'an — Luv\a_ wn *‘eu. e twsa,.ng p\@\l ull‘ﬂ\ ru.c.LS lj Jckl T
rwum"\% ("” ! > ’J)

e Decisions, transitions, and rewards/costs at stage ¢ (edges):

n s not o los\'nj l:la*l'\f] ‘:au M\ fl ~“2 ﬂbu

,f— ‘J\w t

: n . m \) e sk c.." wsrble [acerments
/ \""“QH" } o" f\lu, rt . [J\»ra,ma lei w

b oF liwe is deored will

- locspmamt 2 an fell w
4 Plys
nois a ,oh‘ﬂa_ fl‘bzﬂ"'\é Q’:U*: 3 vl pieee &
&uhmu“ \ 0 s
no A,
— D lwg\“" ; I £, ‘
(T+1),
E ok
J (1)y ’/
e Source node: l‘ ('”‘fL) (wll e [;\'Lq_ I) Sink node:)UV“L

e Shortest/longest path? | ”"‘3“ +

e Maximum number of points:
LQM-ﬁH'\ o£ o lma;.Sl’ rm\{s

e Actual placement of pieces that give the maximum number of points:

El%/--‘ N l/"“XJl' rﬂ-w‘ WW‘%("NL b wL«&L rluwkunk 41 \W‘LL

Big DPs and the curse of dimensionality

e How big are these DPs we just formulated?

o Tetris:
o Number of states per stage: N = luo ¥ .6l x)0 bo
o Number of stages T
[
= Number of nodes: N(T+|) +] = (l. LIx (0)(TH) T |
e Rubik’s cube:
o Number of states per stage: N =~ 4.33 x (0 X

o Number of stages T
= Number of nodes: N(T+|) + x (‘1-33 X IOH)(TH) + |

e The number of states is huge for both these DPs!
= The DPs we formulated (as-is) are not solvable using today’s computing power
e This is known as the curse of dimensionality in dynamic programming

e Approximate dynamic programming is an active area of research that tries to address the curse of dimension-
ality in various ways

o For example, for Tetris: https://papers.nips.cc/paper/5196-approximate-dynamic-programming-
finally-performs-well-in-the-game-of-tetris.pdf

