SA367 - Mathematical Models for Decision Making Spring 2021 - Uhan

Lesson 7. Big DPs and the Curse of Dimensionality

1 Solving a Rubik’s cube
e In a classic Rubik’s cube, each of the 6 faces is covered by 9 stickers

e Each sticker can be one of 6 colors: white, red, blue, orange, green and yellow

e Each face of the cube can be turned independently

o Notation:

R L ) D
o The letter means turn the face clockwise 90°
o For example, R means turn the right face clockwise 90°
o The letter primed means turn the face counter-clockwise 90°

o For example, R’ means turn the right face counter-clockwise 90°

e The problem: given an initial configuration of the cube, find a shortest sequence of turns so that each face has
only one color

o You may assume that you are allowed at most T turns

o It turns out that any configuration can be solved in 26 turns or less: http://cube20.org/qtm/

e How can we formulate this problem as a dynamic program?
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e States in stage ¢ (nodes):

e Decisions, transitions, and rewards/costs at stage ¢ (edges):
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Shortest/longest path? shor kst

Minimum number of turns required to solve the cube:
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Actual sequence of turns that give the minimum number of turns to solve the cube:
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2 Tetris
e You've all played Tetris before, right? Just in case...

e Tetris is a video game in which pieces fall down a 2D playing field, like this:

e Each piece is made up of four equally-sized bricks, and the playing field is 10 bricks wide and 20 bricks high

o As the pieces fall, the player can rotate them 90° in either direction, or move them left and right

e When a row is constructed without any holes, the player receives a point and the corresponding row is cleared
e The game is over once the height of bricks exceeds 20

e The problem: given a predetermined sequence of T pieces', determine how to place each piece in order to
maximize the number of points accumulated over the course of the game

e How can we formulate this problem as a dynamic program?

'Normally, the sequence of falling pieces is random and infinitely long. We'll consider this easier version here.
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e Decisions, transitions, and rewards/costs at stage ¢ (edges):
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e Shortest/longest path? | ”"‘3“ +

e Maximum number of points:
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e Actual placement of pieces that give the maximum number of points:
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Big DPs and the curse of dimensionality

e How big are these DPs we just formulated?

o Tetris:
o Number of states per stage: N = luo ¥ .6l x )0 bo
o Number of stages T
[
= Number of nodes: N(T+|) + ] = (l. LIx (0 )(TH) T |
e Rubik’s cube:
o Number of states per stage: N =~ 4.33 x (0 X

o Number of stages T
= Number of nodes: N(T+|) + x (‘1-33 X IOH)(TH) + |

e The number of states is huge for both these DPs!
= The DPs we formulated (as-is) are not solvable using today’s computing power
e This is known as the curse of dimensionality in dynamic programming

e Approximate dynamic programming is an active area of research that tries to address the curse of dimension-
ality in various ways

o For example, for Tetris: https://papers.nips.cc/paper/5196-approximate-dynamic-programming-
finally-performs-well-in-the-game-of-tetris.pdf



