
SA��� Mathematical Models for Decision Making Spring ���� Uhan

Lesson ��. FormulatingDynamic Programming Recursions
� Warm up

Consider the knapsack problem we studied in Lesson �:

Example �. You are a thief deciding which preciousmetals to steal from a vault:

Metal Weight (kg) Value

� Gold � ��
� Silver � �
� Platinum � ��

You have a knapsack that can hold atmost �kg. If you decide to take a particularmetal, youmust take all of it. Which
items should you take to maximize the value of your the�?

● We formulated the following DP for this problem by giving the following longest path representation:

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

end
stage �

take gold?
stage �

take silver?
stage �

take platinum?
stage �
end

end

�

�

�

�

�

�

�

�

�

��
��

��
��

��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
��

��
��

��

�
�

�
�
�
�
�

�
�

source

sink

● Let ft(n) = length of a shortest path from node tn to the end node

● In the context of the knapsack problem:

f�(�) =

f�(�) =

f�(�) =
● In other words, these are optimal values of subproblems of the knapsack problem

�



� FormulatingDP recursions

● Last lesson: recursions for shortest path problems

● Dynamic programs are not usually given as shortest/longest path problems

○ However, it is usually easier to think about DPs this way

● Instead, the standard way to describe a dynamic program is a recursion that de�nes the optimal value of one
subproblem in terms of the optimal values of other subproblems

● Let’s formulate the knapsack problem in Example � as a DP, but now by giving its recursive representation

● Let
wt = weight ofmetal t vt = value ofmetal t for t = �, �, �

● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Contribution of decision xt at stage t and state n:

● Value-to go function ft(n) at stage t and state n:

● Boundary conditions:

�



● Recursion:

● Desired value-to-go function value:

● In general, to formulate a DP by giving its recursive representation:

Dynamic program – recursive representation

● Stages t = �, �, . . . , T and states n = �, �, �, . . . ,N
● Allowable decisions xt at stage t and state n (t = �, . . . , T − �; n = �, �, . . . ,N)

● Contribution of decision xt at stage t and state n (t = �, . . . , T ; n = �, �, . . . ,N)

● Value-to-go function ft(n) at stage t and state n (t = �, . . . , T ; n = �, �, . . . ,N)

● Boundary conditions on fT(n) at state n (n = �, �, . . . ,N)

● Recursion on ft(n) at stage t and state n (t = �, . . . , T − �; n = �, �, . . . ,N)

ft(n) =min ormax
xt allowable

��������
contribution of
decision xt

� + ft+�� new state
resulting
from xt

��������
● Desired value-to-go function value

● How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path Recursive

node tn ↔ state n at stage t
edge (tn , (t + �)m) ↔ allowable decision xt in state n at stage t that results in

being in state m at stage t + �
length of edge (tn , (t + �)m) ↔ contribution of decision xt in state n at stage t that

results in being in state m at stage t + �
length of shortest/longest path from

node tn to end node
↔ value-to-go function ft(n)

length of edges (Tn , end) ↔ boundary conditions fT(n)
shortest or longest path ↔ recursion ismin ormax:

ft(n) =min ormax
x t allowable

��������
contribution of
decision xt

�+ ft+�� new state
resulting
from xt

��������
source node �n ↔ desired value-to-go function value f�(n)

�



� SolvingDP recursions

● To improve our understanding of how this recursive representation works, let’s solve the DP we just wrote for
the knapsack problem

● We solve the DP backwards:

○ start with the boundary conditions in stage T
○ compute values of the value-to-go function ft(n) in stages T − �, T − �, . . . , �, �
○ . . .until we reach the desired value-to-go function value

● Stage � computations – boundary conditions:

● Stage � computations:

f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =

�



● Stage � computations:

f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =

● Stage � computations – desired value-to-go function:

● Maximum value of the�:

● Metals to take to achieve thismaximum value:

�



� Another example

Example �. �e Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. �e
companymust supply � batch nextmonth, then � and � in successivemonths. Each month in which the company
produces the beer requires a factory setup cost of ��,���. Each batch of beer costs ��,��� to produce. Batches can be
held in inventory at a cost of ��,��� per batch permonth. Capacity limitations allow amaximum of � batches to be
produced during each month. In addition, the size of the company’s warehouse restricts the ending inventory for each
month to atmost � batches. �e company has no initial inventory.

�e company wants to �nd a production plan that will meet all demands on time andminimizes its total production
and holding costs over the next � months. Formulate this problem as a dynamic program by giving its recursive
representation. Solve the dynamic program.

Formulating the DP

● Back in Lesson �, we formulated this problem as a dynamic program with the following shortest path representa-
tion:

○ Stage t represents the beginning ofmonth t (t = �, �, �) or the end of the decision-making process (t = �).○ Node tn represents having n batches in inventory at stage t (n = �, �, �, �).

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

end
Stage � Stage � Stage � Stage �

�

�

�

�

source sink

Month Production amount Edge Edge length

� � (�n , �n−�) for n = �, �, � �(n − �)
� � (�n , �n) for n = �, �, �, �, � � + �(�) + �(n)
� � (�n , �n+�) for n = �, �, � � + �(�) + �(n + �)
� � (�n , �n+�) for n = �, � � + �(�) + �(n + �)
� � (�n , �n−�) for n = �, � �(n − �)
� � (�n , �n−�) for n = �, �, � � + �(�) + �(n − �)
� � (�n , �n) for n = �, �, �, � � + �(�) + �(n)
� � (�n , �n+�) for n = �, �, � � + �(�) + �(n + �)
� � not possible
� � (�n , �n−�) for n = � � + �(�) + �(n − �)
� � (�n , �n−�) for n = �, � � + �(�) + �(n − �)
� � (�n , �n−�) for n = �, �, � � + �(�) + �(n − �)

�



● Let dt = number of batches required in month t, for t = �, �, �
● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Contribution of decision xt at stage t and state n:

● Value-to go function ft(n) at stage t and state n:

● Boundary conditions:

● Recursion:

● Desired value-to-go function value:

�



Solving the DP

● Stage � computations – boundary conditions:

● Stage � computations:

f�(�) =

f�(�) =
f�(�) =
f�(�) =

● Stage � computations:

f�(�) =

f�(�) =

f�(�) =
f�(�) =

● Stage � computations – desired value-to-go function:

● Minimum total production and holding cost:

● Production amounts that achieve thisminimum value:

�



A Problems

Problem � (Dynamic Distillery – recursion). You have been put in charge of launching Dynamic Distillery’s new
bourbon whiskey. �ere are � nonoverlapping phases: research, development, manufacturing system design, and
initial production and distribution. Each phase can conducted the two speeds: normal or priority. �e times required
(in months) to complete each phases at the two speeds are:

Manufacturing Initial Production
Level Research Development System Design and Distribution

Normal � � � �
Priority � � � �

�e costs (in millions of �) of complete each phase at the two speeds are:

Manufacturing Initial Production
Level Research Development System Design and Distribution

Normal � � � �
Priority � � � �

You have been given ���million to execute the launch as quickly as possible. Formulate this problem as a dynamic
program by giving its recursive representation. Solve the dynamic program.

Problem � (Pear Computers – recursion). Pear Computers has a contract to deliver the following number of laptop
computers during the next threemonths:

Month � Month � Month �

Laptop computers required ��� ��� ���

For each laptop produced during months � and �, a ���� cost is incurred; for each laptop produced during month �,
a ���� cost is incurred. Each month in which the company produces laptops requires a factory setup cost of ��,���.
Laptops can be held in a warehouse at a cost of ��� for each laptop in inventory at the end of amonth. �e warehouse
can hold atmost ��� laptops.

Laptopsmade during amonth may be used to meet demand for thatmonth or any futuremonth. Manufacturing
constraints require that laptops be produced in multiples of ���, and at most ��� laptops can be produced in any
month. �e company’s goal is to �nd a production plan that will meet all demands on time andminimizes its total
production and holding costs over the next �months. Formulate this problem as a dynamic program by giving its
recursive representation. Solve the dynamic program.

�


