Lesson 2. Probability Review

1 Random variables

- A random variable is a variable that takes on its values by chance
- One perspective: a random variable represents unknown future results
- Notation convention:
- Uppercase letters (e.g. X, Y, Z) to denote random variables
- Lowercase letters (e.g. x, y, z) to denote real numbers
- $\{X \leq x\}$ is the event that the random variable X is less than or equal to the real number x
- The probability this event occurs is written as $\operatorname{Pr}\{X \leq x\}$
- A random variable X is characterized by its probability distribution, which can be described by its cumulative distribution function (cdf), F_{X} :
- We can use the cdf of X to find the probability that X is between a and b :

Example 1. From ESPN/AP on August 14, 2013:
The Blue Jays traded utilityman Emilio Bonifacio to Kansas City for a player to be named later.
Let X be a random variable that represents the player to be named later (using integer ID numbers 1, 2, 3, 4 instead of four names). Suppose the cdf for X is:

$$
F_{X}(a)= \begin{cases}0 & \text { if } a<1, \\ 0.1 & \text { if } 1 \leq a<2, \\ 0.4 & \text { if } 2 \leq a<3, \\ 0.9 & \text { if } 3 \leq a<4, \\ 1 & \text { if } a \geq 4\end{cases}
$$

Plot the cdf for X. What is $\operatorname{Pr}\{X \leq 3\}$? What is $\operatorname{Pr}\{X=2\}$?
\square

- Some properties of generic cdf $F(a)$:
- Domain: \square
- Range: \square
- As a increases, $F(a)$ \square
\diamond In other words, F is
- F is right-continuous: if F has a discontinuity at a, then $F(a)$ is determined by the piece of the function on the right-hand side of the discontinuity
- A random variable is discrete if it can take on only a finite or countably infinite number of values
- Let X be a discrete random variable that takes on values a_{1}, a_{2}, \ldots
- The probability mass function (pmf) p_{X} of X is:
\square
- The pmf and cdf of a discrete random variable are related:
\square
- A random variable is continuous if it can take on a continuum of values
- The probability density function (pdf) f_{X} of a continuous random variable X is:
\square
- We can get the cdf from the pdf:
\square
Example 2. Find the pmf of X defined in Example 1.

Example 3. Let Y be a exponentially distributed random variable with parameter λ. In other words, the cdf of Y is

$$
F_{Y}(a)= \begin{cases}0 & \text { if } a<0 \\ 1-e^{-\lambda a} & \text { if } a \geq 0\end{cases}
$$

a. Find the pdf of Y.
b. Let $\lambda=2$. Plot the pdf of Y.
c. For this random variable, which values are more likely or less likely?
d. What is $\operatorname{Pr}\{Y=3\}$?

2 Expected value

- The expected value of a random variable is its weighted average
- If X is a discrete random variable taking values a_{1}, a_{2}, \ldots with pmf p_{X}, then the expected value of X is
\square
- If X is a continuous random variable with pdf f_{X}, then the expected value of X is
\square
- We can similarly take the expected value of a function g of a random variable X
\square
- X is continuous: \square
- The variance of X is
\square

Example 4. Find the expected value and the variance of X, as defined in Example 1.
\square
Example 5. The indicator function $\mathcal{I}(\cdot)$ takes on the value 1 if its argument is true, and 0 otherwise. Let X be a discrete random variable that takes on values a_{1}, a_{2}, \ldots Find $E[\mathcal{I}(X \leq b)]$.
\square

- Example 5 works similarly for continuous random variables
- Probabilities can be expressed as the expected value of an indicator function
- Some useful properties: let X, Y be random variables, and a, b be constants
- $E[a X+b]=a E[X]+b$
- $E[X+Y]=E[X]+E[Y]$
- $\operatorname{Var}(a+b X)=b^{2} \operatorname{Var}(X)$
- In general, $E[g(X)] \neq g(E[X])$

3 Joint distributions and independence

- Let X and Y be random variables
- X and Y could be dependent
- For example, X and Y are the times that the 1 st and 2 nd customers wait in the queue, respectively
- If we want to determine the probability of an event that depends both on X and Y, we need their joint distribution
- The joint cdf of X and Y is:
- Two random variables X and Y are independent if knowing the value of X does not change the probability distribution for the value of Y
- Mathematically speaking, X and Y are independent if
\square
- Independence makes dealing with joint distributions easier!
- Idea generalizes to 3 or more variables

4 Exercises

Problem 1 (Nelson 3.1). Calculate the following probabilities from the cdf given in Example 1. In each case, begin by writing the appropriate probability statement, for example $\operatorname{Pr}\{X=4\}$; then calculate the probability.
a. The probability that player 4 will be traded.
b. The probability that player 2 will not be traded.
c. The probability that the index of the player traded will be less than 3 .
d. The probability that the index of the player traded will be larger than 1 .

Problem 2 (Nelson 3.2). Let Y be an exponential random variable with parameter $\lambda=2$ that models the time to deliver a pizza in hours. Calculate the following probabilities. In each case, begin by writing the appropriate probability statement, for example $\operatorname{Pr}\{Y \leq 1 / 2\}$; then calculate the probability.
a. The pizza-delivery company promises delivery within 40 minutes or the pizza is free. What is the probability that it will have to give a pizza away for free?
b. The probability that delivery takes longer than 1 hour.
c. The probability that delivery takes between 10 and 40 minutes.
d. The probability that delivery takes less than 5 minutes.

Problem 3 (Nelson 3.3). A random variable X has the following cdf:

$$
F_{X}(a)= \begin{cases}0 & \text { if } a<0, \\ \frac{a^{2}}{\delta^{2}} & \text { if } 0 \leq a \leq \delta, \\ 1 & \text { if } a>\delta\end{cases}
$$

a. What is the density function of X ?
b. What is the maximum possible value that X can take?
c. What is the expected value of X ?

Problem 4 (Nelson 3.5). A random variable Y has the following pdf:

$$
f_{Y}(a)= \begin{cases}0 & \text { if } a<0 \\ \frac{3}{16} a^{2}+\frac{1}{4} & \text { if } 0 \leq a \leq 2 \\ 0 & \text { if } a>2\end{cases}
$$

a. What is the expected value of Y ?
b. What is the cdf of Y ?
c. For this random variable, which is more likely: a value near $1 / 2$ or a value near $3 / 2$?

